- Release Notes
- Introduction to CelerData Cloud Serverless
- Quick Start
- Sign up for CelerData Cloud Serverless
- A quick tour of the console
- Connect to CelerData Cloud Serverless
- Create an IAM integration
- Create and assign a warehouse
- Create an external catalog
- Load data from cloud storage
- Load data from Apache Kafka/Confluent Cloud
- Try your first query
- Invite new users
- Design data access control policy
- Warehouses
- Catalog, database, table, view, and MV
- Overview of database objects
- Catalog
- Table types
- Asynchronous materialized views
- Data Loading
- Data access control
- Networking and private connectivity
- Usage and Billing
- Organization and Account
- Integration
- Query Acceleration
- Reference
- AWS IAM policies
- Information Schema
- Overview
- be_bvars
- be_cloud_native_compactions
- be_compactions
- character_sets
- collations
- column_privileges
- columns
- engines
- events
- global_variables
- key_column_usage
- load_tracking_logs
- loads
- materialized_views
- partitions
- pipe_files
- pipes
- referential_constraints
- routines
- schema_privileges
- schemata
- session_variables
- statistics
- table_constraints
- table_privileges
- tables
- tables_config
- task_runs
- tasks
- triggers
- user_privileges
- views
- Data Types
- System Metadatabase
- Keywords
- SQL Statements
- Account Management
- Data Definition
- CREATE TABLE
- ALTER TABLE
- DROP CATALOG
- CREATE TABLE LIKE
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- DROP TABLE
- RECOVER
- USE
- CREATE MATERIALIZED VIEW
- DROP DATABASE
- ALTER MATERIALIZED VIEW
- DROP REPOSITORY
- CANCEL RESTORE
- DROP INDEX
- DROP MATERIALIZED VIEW
- CREATE DATABASE
- CREATE TABLE AS SELECT
- BACKUP
- CANCEL BACKUP
- CREATE REPOSITORY
- CREATE INDEX
- Data Manipulation
- INSERT
- SHOW CREATE DATABASE
- SHOW BACKUP
- SHOW ALTER MATERIALIZED VIEW
- SHOW CATALOGS
- SHOW CREATE MATERIALIZED VIEW
- SELECT
- SHOW ALTER
- SHOW MATERIALIZED VIEW
- RESUME ROUTINE LOAD
- ALTER ROUTINE LOAD
- SHOW TABLES
- STREAM LOAD
- SHOW PARTITIONS
- CANCEL REFRESH MATERIALIZED VIEW
- SHOW CREATE CATALOG
- SHOW ROUTINE LOAD TASK
- SHOW RESTORE
- CREATE ROUTINE LOAD
- STOP ROUTINE LOAD
- SHOW DATABASES
- BROKER LOAD
- SHOW ROUTINE LOAD
- PAUSE ROUTINE LOAD
- SHOW SNAPSHOT
- SHOW CREATE TABLE
- CANCEL LOAD
- REFRESH MATERIALIZED VIEW
- SHOW REPOSITORIES
- SHOW LOAD
- Administration
- DESCRIBE
- SQL Functions
- Function List
- String Functions
- CONCAT
- HEX
- LOWER
- SPLIT
- LPAD
- SUBSTRING
- PARSE_URL
- INSTR
- REPEAT
- LCASE
- REPLACE
- HEX_DECODE_BINARY
- RPAD
- SPLIT_PART
- STRCMP
- SPACE
- CHARACTER_LENGTH
- URL_ENCODE
- APPEND_TAILING_CHAR_IF_ABSENT
- LTRIM
- HEX_DECODE_STRING
- URL_DECODE
- LEFT
- STARTS_WITH
- CONCAT
- GROUP_CONCAT
- STR_TO_MAP
- STRLEFT
- STRRIGHT
- MONEY_FORMAT
- RIGHT
- SUBSTRING_INDEX
- UCASE
- TRIM
- FIND_IN_SET
- RTRIM
- ASCII
- UPPER
- REVERSE
- LENGTH
- UNHEX
- ENDS_WITH
- CHAR_LENGTH
- NULL_OR_EMPTY
- LOCATE
- CHAR
- Predicate Functions
- Map Functions
- Binary Functions
- Geospatial Functions
- Lambda Expression
- Utility Functions
- Bitmap Functions
- BITMAP_SUBSET_LIMIT
- TO_BITMAP
- BITMAP_AGG
- BITMAP_FROM_STRING
- BITMAP_OR
- BITMAP_REMOVE
- BITMAP_AND
- BITMAP_TO_BASE64
- BITMAP_MIN
- BITMAP_CONTAINS
- SUB_BITMAP
- BITMAP_UNION
- BITMAP_COUNT
- BITMAP_UNION_INT
- BITMAP_XOR
- BITMAP_UNION_COUNT
- BITMAP_HAS_ANY
- BITMAP_INTERSECT
- BITMAP_AND_NOT
- BITMAP_TO_STRING
- BITMAP_HASH
- INTERSECT_COUNT
- BITMAP_EMPTY
- BITMAP_MAX
- BASE64_TO_ARRAY
- BITMAP_TO_ARRAY
- Struct Functions
- Aggregate Functions
- RETENTION
- MI
- MULTI_DISTINCT_SUM
- WINDOW_FUNNEL
- STDDEV_SAMP
- GROUPING_ID
- HLL_HASH
- AVG
- HLL_UNION_AGG
- COUNT
- BITMAP
- HLL_EMPTY
- SUM
- MAX_BY
- PERCENTILE_CONT
- COVAR_POP
- PERCENTILE_APPROX
- HLL_RAW_AGG
- STDDEV
- CORR
- COVAR_SAMP
- MIN_BY
- MAX
- VAR_SAMP
- STD
- HLL_UNION
- APPROX_COUNT_DISTINCT
- MULTI_DISTINCT_COUNT
- VARIANCE
- ANY_VALUE
- COUNT_IF
- GROUPING
- PERCENTILE_DISC
- Array Functions
- ARRAY_CUM_SUM
- ARRAY_MAX
- ARRAY_LENGTH
- ARRAY_REMOVE
- UNNEST
- ARRAY_SLICE
- ALL_MATCH
- ARRAY_CONCAT
- ARRAY_SORT
- ARRAY_POSITION
- ARRAY_DIFFERENCE
- ARRAY_CONTAINS
- ARRAY_JOIN
- ARRAY_INTERSECT
- CARDINALITY
- ARRAY_CONTAINS_ALL
- ARRAYS_OVERLAP
- ARRAY_MIN
- ARRAY_MAP
- ELEMENT_AT
- ARRAY_APPEND
- ARRAY_SORTBY
- ARRAY_TO_BITMAP
- ARRAY_GENERATE
- ARRAY_AVG
- ARRAY_FILTER
- ANY_MATCH
- REVERSE
- ARRAY_AGG
- ARRAY_DISTINCT
- ARRAY_SUM
- Condition Functions
- Math Functions
- Date and Time Functions
- DAYNAME
- MINUTE
- FROM_UNIXTIME
- HOUR
- MONTHNAME
- MONTHS_ADD
- ADD_MONTHS
- DATE_SUB
- PREVIOUS_DAY
- TO_TERA_DATA
- MINUTES_SUB
- WEEKS_ADD
- HOURS_DIFF
- UNIX_TIMESTAMP
- DAY
- DATE_SLICE
- DATE
- CURTIME
- SECONDS_SUB
- MONTH
- WEEK
- TO_DATE
- TIMEDIFF
- MONTHS_DIFF
- STR_TO_JODATIME
- WEEK_ISO
- MICROSECONDS_SUB
- TIME_SLICE
- MAKEDATE
- DATE_TRUNC
- JODATIME
- DAYOFWEEK
- YEARS_SUB
- TIMESTAMP_ADD
- HOURS_SUB
- STR2DATE
- TIMESTAMP
- FROM_DAYS
- WEEK_OF_YEAR
- YEAR
- TIMESTAMP_DIFF
- TO_TERA_TIMESTAMP
- DAYOFMONTH
- DAYOFYEAR
- DATE_FORMAT
- MONTHS_SUB
- NEXT_DAY
- MINUTES_DIFF
- DATA_ADD
- MINUTES_ADD
- CURDATE
- DAY_OF_WEEK_ISO
- CURRENt_TIMESTAMP
- STR_TO_DATE
- LAST_DAY
- WEEKS_SUB
- TO_DAYS
- DATEDIFF
- NOW
- TO_ISO8601
- TIME_TO_SEC
- QUARTER
- SECONDS_DIFF
- UTC_TIMESTAMP
- DATA_DIFF
- SECONDS_ADD
- ADDDATE
- WEEKSDIFF
- CONVERT_TZ
- MICROSECONDS_ADD
- SECOND
- YEARS_DIFF
- YEARS_ADD
- HOURS_ADD
- DAYS_SUB
- DAYS_DIFF
- Cryptographic Functions
- Percentile Functions
- Bit Functions
- JSON Functions
- Hash Functions
- Scalar Functions
- Table Functions
ARRAY
ARRAY, as an extended type of database, is supported in various database systems such as PostgreSQL, ClickHouse, and Snowflake. ARRAY is widely used in scenarios such as A/B tests, user tag analysis, and user profiling. CelerData supports multidimensional array nesting, array slicing, comparison, and filtering.
Define ARRAY columns
You can define an ARRAY column when you create a table.
-- Define a one-dimensional array.
ARRAY<type>
-- Define a nested array.
ARRAY<ARRAY<type>>
-- Define an array column as NOT NULL.
ARRAY<type> NOT NULL
type
specifies the data types of elements in an array. CelerData supports the following element types: BOOLEAN, TINYINT, SMALLINT, INT, BIGINT, LARGEINT, FLOAT, DOUBLE, VARCHAR, CHAR, DATETIME, DATE, JSON, ARRAY, MAP, and STRUCT.
Elements in an array are nullable by default, for example, [null, 1 ,2]
. You cannot specify elements in an array as NOT NULL. However, you can specify an ARRAY column as NOT NULL when you create a table, such as the third example in the following code snippet.
Examples:
-- Define c1 as a one-dimensional array whose element type is INT.
create table t0(
c0 INT,
c1 ARRAY<INT>
)
duplicate key(c0)
distributed by hash(c0);
-- Define c1 as an nested array whose element type is VARCHAR.
create table t1(
c0 INT,
c1 ARRAY<ARRAY<VARCHAR(10)>>
)
duplicate key(c0)
distributed by hash(c0);
-- Define c1 as a NOT NULL array column.
create table t2(
c0 INT,
c1 ARRAY<INT> NOT NULL
)
duplicate key(c0)
distributed by hash(c0);
Limits
The following limits apply when you create ARRAY columns in CelerData tables:
- You can create ARRAY columns in tables of all types. Note that in an Aggregate table, you can create an ARRAY column only when the function used to aggregate data in that column is replace() or replace_if_not_null(). For more information, see Aggregate table.
- ARRAY columns cannot be used as key columns.
- ARRAY columns cannot be used as partition keys (included in PARTITION BY) or bucketing keys (included in DISTRIBUTED BY).
- DECIMAL V3 is not supported in ARRAY.
- An array can have a maximum of 14-level nesting.
Construct arrays in SQL
Arrays can be constructed in SQL using brackets []
, with each array element separated by a comma (,
).
mysql> select [1, 2, 3] as numbers;
+---------+
| numbers |
+---------+
| [1,2,3] |
+---------+
mysql> select ["apple", "orange", "pear"] as fruit;
+---------------------------+
| fruit |
+---------------------------+
| ["apple","orange","pear"] |
+---------------------------+
mysql> select [true, false] as booleans;
+----------+
| booleans |
+----------+
| [1,0] |
+----------+
CelerData automatically infers data types if an array consists of elements of multiple types:
mysql> select [1, 1.2] as floats;
+---------+
| floats |
+---------+
| [1.0,1.2] |
+---------+
mysql> select [12, "100"];
+--------------+
| [12,'100'] |
+--------------+
| ["12","100"] |
+--------------+
You can use pointed brackets (<>
) to show the declared array type.
mysql> select ARRAY<float>[1, 2];
+-----------------------+
| ARRAY<float>[1.0,2.0] |
+-----------------------+
| [1,2] |
+-----------------------+
mysql> select ARRAY<INT>["12", "100"];
+------------------------+
| ARRAY<int(11)>[12,100] |
+------------------------+
| [12,100] |
+------------------------+
NULLs can be included in the element.
mysql> select [1, NULL];
+----------+
| [1,NULL] |
+----------+
| [1,null] |
+----------+
For an empty array, you can use pointed brackets to show the declared type, or you can write [] directly for CelerData to infer the type based on the context. If CelerData cannot infer the type, it will report an error.
mysql> select [];
+------+
| [] |
+------+
| [] |
+------+
mysql> select ARRAY<VARCHAR(10)>[];
+----------------------------------+
| ARRAY<unknown type: NULL_TYPE>[] |
+----------------------------------+
| [] |
+----------------------------------+
mysql> select array_append([], 10);
+----------------------+
| array_append([], 10) |
+----------------------+
| [10] |
+----------------------+
Load Array data
CelerData supports loading Array data in three ways:
- INSERT INTO is suitable for loading small-scale data for testing.
- Broker Load is suitable for loading ORC or Parquet files with large-scale data.
Use INSERT INTO to load arrays
You can use INSERT INTO to load small-scale data column by column, or perform ETL on data before loading the data.
create table t0(
c0 INT,
c1 ARRAY<INT>
)
duplicate key(c0)
distributed by hash(c0);
INSERT INTO t0 VALUES(1, [1,2,3]);
Use Broker Load to load arrays from ORC or Parquet files
The array type in CelerData corresponds to the list structure in ORC and Parquet files, which eliminates the need for you to specify different data types in CelerData. For more information about data loading, see Broker load.
Query ARRAY data
You can access elements in an array using []
and subscripts, starting from 1
.
mysql> select [1,2,3][1];
+------------+
| [1,2,3][1] |
+------------+
| 1 |
+------------+
1 row in set (0.00 sec)
If the subscript is 0 or a negative number, no error is reported and NULL is returned.
mysql> select [1,2,3][0];
+------------+
| [1,2,3][0] |
+------------+
| NULL |
+------------+
1 row in set (0.01 sec)
If the subscript exceeds the length of the array (the number of elements in the array), NULL will be returned.
mysql> select [1,2,3][4];
+------------+
| [1,2,3][4] |
+------------+
| NULL |
+------------+
1 row in set (0.01 sec)
For multidimensional arrays, the elements can be accessed recursively.
mysql(ARRAY)> select [[1,2],[3,4]][2];
+------------------+
| [[1,2],[3,4]][2] |
+------------------+
| [3,4] |
+------------------+
1 row in set (0.00 sec)
mysql> select [[1,2],[3,4]][2][1];
+---------------------+
| [[1,2],[3,4]][2][1] |
+---------------------+
| 3 |
+---------------------+
1 row in set (0.01 sec)