- Release Notes
- Introduction to CelerData Cloud Serverless
- Quick Start
- Sign up for CelerData Cloud Serverless
- A quick tour of the console
- Connect to CelerData Cloud Serverless
- Create an IAM integration
- Create and assign a warehouse
- Create an external catalog
- Load data from cloud storage
- Load data from Apache Kafka/Confluent Cloud
- Try your first query
- Invite new users
- Design data access control policy
- Warehouses
- Catalog, database, table, view, and MV
- Overview of database objects
- Catalog
- Table types
- Asynchronous materialized views
- Data Loading
- Data access control
- Networking and private connectivity
- Usage and Billing
- Organization and Account
- Integration
- Query Acceleration
- Reference
- AWS IAM policies
- Information Schema
- Overview
- be_bvars
- be_cloud_native_compactions
- be_compactions
- character_sets
- collations
- column_privileges
- columns
- engines
- events
- global_variables
- key_column_usage
- load_tracking_logs
- loads
- materialized_views
- partitions
- pipe_files
- pipes
- referential_constraints
- routines
- schema_privileges
- schemata
- session_variables
- statistics
- table_constraints
- table_privileges
- tables
- tables_config
- task_runs
- tasks
- triggers
- user_privileges
- views
- Data Types
- System Metadatabase
- Keywords
- SQL Statements
- Account Management
- Data Definition
- CREATE TABLE
- ALTER TABLE
- DROP CATALOG
- CREATE TABLE LIKE
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- DROP TABLE
- RECOVER
- USE
- CREATE MATERIALIZED VIEW
- DROP DATABASE
- ALTER MATERIALIZED VIEW
- DROP REPOSITORY
- CANCEL RESTORE
- DROP INDEX
- DROP MATERIALIZED VIEW
- CREATE DATABASE
- CREATE TABLE AS SELECT
- BACKUP
- CANCEL BACKUP
- CREATE REPOSITORY
- CREATE INDEX
- Data Manipulation
- INSERT
- SHOW CREATE DATABASE
- SHOW BACKUP
- SHOW ALTER MATERIALIZED VIEW
- SHOW CATALOGS
- SHOW CREATE MATERIALIZED VIEW
- SELECT
- SHOW ALTER
- SHOW MATERIALIZED VIEW
- RESUME ROUTINE LOAD
- ALTER ROUTINE LOAD
- SHOW TABLES
- STREAM LOAD
- SHOW PARTITIONS
- CANCEL REFRESH MATERIALIZED VIEW
- SHOW CREATE CATALOG
- SHOW ROUTINE LOAD TASK
- SHOW RESTORE
- CREATE ROUTINE LOAD
- STOP ROUTINE LOAD
- SHOW DATABASES
- BROKER LOAD
- SHOW ROUTINE LOAD
- PAUSE ROUTINE LOAD
- SHOW SNAPSHOT
- SHOW CREATE TABLE
- CANCEL LOAD
- REFRESH MATERIALIZED VIEW
- SHOW REPOSITORIES
- SHOW LOAD
- Administration
- DESCRIBE
- SQL Functions
- Function List
- String Functions
- CONCAT
- HEX
- LOWER
- SPLIT
- LPAD
- SUBSTRING
- PARSE_URL
- INSTR
- REPEAT
- LCASE
- REPLACE
- HEX_DECODE_BINARY
- RPAD
- SPLIT_PART
- STRCMP
- SPACE
- CHARACTER_LENGTH
- URL_ENCODE
- APPEND_TAILING_CHAR_IF_ABSENT
- LTRIM
- HEX_DECODE_STRING
- URL_DECODE
- LEFT
- STARTS_WITH
- CONCAT
- GROUP_CONCAT
- STR_TO_MAP
- STRLEFT
- STRRIGHT
- MONEY_FORMAT
- RIGHT
- SUBSTRING_INDEX
- UCASE
- TRIM
- FIND_IN_SET
- RTRIM
- ASCII
- UPPER
- REVERSE
- LENGTH
- UNHEX
- ENDS_WITH
- CHAR_LENGTH
- NULL_OR_EMPTY
- LOCATE
- CHAR
- Predicate Functions
- Map Functions
- Binary Functions
- Geospatial Functions
- Lambda Expression
- Utility Functions
- Bitmap Functions
- BITMAP_SUBSET_LIMIT
- TO_BITMAP
- BITMAP_AGG
- BITMAP_FROM_STRING
- BITMAP_OR
- BITMAP_REMOVE
- BITMAP_AND
- BITMAP_TO_BASE64
- BITMAP_MIN
- BITMAP_CONTAINS
- SUB_BITMAP
- BITMAP_UNION
- BITMAP_COUNT
- BITMAP_UNION_INT
- BITMAP_XOR
- BITMAP_UNION_COUNT
- BITMAP_HAS_ANY
- BITMAP_INTERSECT
- BITMAP_AND_NOT
- BITMAP_TO_STRING
- BITMAP_HASH
- INTERSECT_COUNT
- BITMAP_EMPTY
- BITMAP_MAX
- BASE64_TO_ARRAY
- BITMAP_TO_ARRAY
- Struct Functions
- Aggregate Functions
- RETENTION
- MI
- MULTI_DISTINCT_SUM
- WINDOW_FUNNEL
- STDDEV_SAMP
- GROUPING_ID
- HLL_HASH
- AVG
- HLL_UNION_AGG
- COUNT
- BITMAP
- HLL_EMPTY
- SUM
- MAX_BY
- PERCENTILE_CONT
- COVAR_POP
- PERCENTILE_APPROX
- HLL_RAW_AGG
- STDDEV
- CORR
- COVAR_SAMP
- MIN_BY
- MAX
- VAR_SAMP
- STD
- HLL_UNION
- APPROX_COUNT_DISTINCT
- MULTI_DISTINCT_COUNT
- VARIANCE
- ANY_VALUE
- COUNT_IF
- GROUPING
- PERCENTILE_DISC
- Array Functions
- ARRAY_CUM_SUM
- ARRAY_MAX
- ARRAY_LENGTH
- ARRAY_REMOVE
- UNNEST
- ARRAY_SLICE
- ALL_MATCH
- ARRAY_CONCAT
- ARRAY_SORT
- ARRAY_POSITION
- ARRAY_DIFFERENCE
- ARRAY_CONTAINS
- ARRAY_JOIN
- ARRAY_INTERSECT
- CARDINALITY
- ARRAY_CONTAINS_ALL
- ARRAYS_OVERLAP
- ARRAY_MIN
- ARRAY_MAP
- ELEMENT_AT
- ARRAY_APPEND
- ARRAY_SORTBY
- ARRAY_TO_BITMAP
- ARRAY_GENERATE
- ARRAY_AVG
- ARRAY_FILTER
- ANY_MATCH
- REVERSE
- ARRAY_AGG
- ARRAY_DISTINCT
- ARRAY_SUM
- Condition Functions
- Math Functions
- Date and Time Functions
- DAYNAME
- MINUTE
- FROM_UNIXTIME
- HOUR
- MONTHNAME
- MONTHS_ADD
- ADD_MONTHS
- DATE_SUB
- PREVIOUS_DAY
- TO_TERA_DATA
- MINUTES_SUB
- WEEKS_ADD
- HOURS_DIFF
- UNIX_TIMESTAMP
- DAY
- DATE_SLICE
- DATE
- CURTIME
- SECONDS_SUB
- MONTH
- WEEK
- TO_DATE
- TIMEDIFF
- MONTHS_DIFF
- STR_TO_JODATIME
- WEEK_ISO
- MICROSECONDS_SUB
- TIME_SLICE
- MAKEDATE
- DATE_TRUNC
- JODATIME
- DAYOFWEEK
- YEARS_SUB
- TIMESTAMP_ADD
- HOURS_SUB
- STR2DATE
- TIMESTAMP
- FROM_DAYS
- WEEK_OF_YEAR
- YEAR
- TIMESTAMP_DIFF
- TO_TERA_TIMESTAMP
- DAYOFMONTH
- DAYOFYEAR
- DATE_FORMAT
- MONTHS_SUB
- NEXT_DAY
- MINUTES_DIFF
- DATA_ADD
- MINUTES_ADD
- CURDATE
- DAY_OF_WEEK_ISO
- CURRENt_TIMESTAMP
- STR_TO_DATE
- LAST_DAY
- WEEKS_SUB
- TO_DAYS
- DATEDIFF
- NOW
- TO_ISO8601
- TIME_TO_SEC
- QUARTER
- SECONDS_DIFF
- UTC_TIMESTAMP
- DATA_DIFF
- SECONDS_ADD
- ADDDATE
- WEEKSDIFF
- CONVERT_TZ
- MICROSECONDS_ADD
- SECOND
- YEARS_DIFF
- YEARS_ADD
- HOURS_ADD
- DAYS_SUB
- DAYS_DIFF
- Cryptographic Functions
- Percentile Functions
- Bit Functions
- JSON Functions
- Hash Functions
- Scalar Functions
- Table Functions
generate_series
Description
Generates a series of values within the interval specified by start
and end
, and with an optional step
.
generate_series() is a table function. A table function can return a row set for each input row. The row set can contain zero, one, or multiple rows. Each row can contain one or more columns.
To use generate_series() in CelerData, you must enclose it in the TABLE keyword if the input parameters are constants. If the input parameters are expressions, such as column names, the TABLE keyword is not required (See Example 5).
Syntax
generate_series(start, end [,step])
Parameters
start
: the starting value of the series, required. Supported data types are INT, BIGINT, and LARGEINT.end
: the ending value of the series, required. Supported data types are INT, BIGINT, and LARGEINT.step
: the value to increment or decrement, optional. Supported data types are INT, BIGINT, and LARGEINT. If not specified, the default step is 1.step
can be either negative or positive, but cannot be zero.
The three parameters must have the same data type, for example, generate_series(INT start, INT end [, INT step])
.
Return value
Returns a series of values that have the same as the input parameters start
and end
.
- When
step
is positive, zero rows are returned ifstart
is greater thanend
. Conversely, whenstep
is negative, zero rows are returned ifstart
is less thanend
. - An error is returned if
step
is 0. - This function deals with nulls as follows: If any input parameter is a literal null, an error is reported. If any input parameter is an expression and the result of the expression is null, 0 rows are returned (See Example 5).
Examples
Example 1: Generate a sequence of values within the range [2,5] in ascending order with the default step 1
.
MySQL > select * from TABLE(generate_series(2, 5));
+-----------------+
| generate_series |
+-----------------+
| 2 |
| 3 |
| 4 |
| 5 |
+-----------------+
Example 2: Generate a sequence of values within the range [2,5] in ascending order with the specified step 2
.
MySQL > select * from TABLE(generate_series(2, 5, 2));
+-----------------+
| generate_series |
+-----------------+
| 2 |
| 4 |
+-----------------+
Example 3: Generate a sequence of values within the range [5,2] in descending order with the specified step -1
.
MySQL > select * from TABLE(generate_series(5, 2, -1));
+-----------------+
| generate_series |
+-----------------+
| 5 |
| 4 |
| 3 |
| 2 |
+-----------------+
Example 4: Zero rows are returned when step
is negative and start
is less than end
.
MySQL > select * from TABLE(generate_series(2, 5, -1));
Empty set (0.01 sec)
Example 5: Use table columns as the input parameters of generate_series(). In this use case, you do not need to use TABLE()
with generate_series().
CREATE TABLE t_numbers(start INT, end INT)
DUPLICATE KEY (start)
DISTRIBUTED BY HASH(start) BUCKETS 1;
INSERT INTO t_numbers VALUES
(1, 3),
(5, 2),
(NULL, 10),
(4, 7),
(9,6);
SELECT * FROM t_numbers;
+-------+------+
| start | end |
+-------+------+
| NULL | 10 |
| 1 | 3 |
| 4 | 7 |
| 5 | 2 |
| 9 | 6 |
+-------+------+
-- Generate multiple rows for rows (1,3) and (4,7) with step 1.
SELECT * FROM t_numbers, generate_series(t_numbers.start, t_numbers.end);
+-------+------+-----------------+
| start | end | generate_series |
+-------+------+-----------------+
| 1 | 3 | 1 |
| 1 | 3 | 2 |
| 1 | 3 | 3 |
| 4 | 7 | 4 |
| 4 | 7 | 5 |
| 4 | 7 | 6 |
| 4 | 7 | 7 |
+-------+------+-----------------+
-- Generate multiple rows for rows (5,2) and (9,6) with step -1.
SELECT * FROM t_numbers, generate_series(t_numbers.start, t_numbers.end, -1);
+-------+------+-----------------+
| start | end | generate_series |
+-------+------+-----------------+
| 5 | 2 | 5 |
| 5 | 2 | 4 |
| 5 | 2 | 3 |
| 5 | 2 | 2 |
| 9 | 6 | 9 |
| 9 | 6 | 8 |
| 9 | 6 | 7 |
| 9 | 6 | 6 |
+-------+------+-----------------+
The input row (NULL, 10)
has a NULL value and zero rows are returned for this row.
keywords
table function, generate series