- Release Notes
- Introduction to CelerData Cloud Serverless
- Quick Start
- Sign up for CelerData Cloud Serverless
- A quick tour of the console
- Connect to CelerData Cloud Serverless
- Create an IAM integration
- Create and assign a warehouse
- Create an external catalog
- Load data from cloud storage
- Load data from Apache Kafka/Confluent Cloud
- Try your first query
- Invite new users
- Design data access control policy
- Warehouses
- Catalog, database, table, view, and MV
- Overview of database objects
- Catalog
- Table types
- Asynchronous materialized views
- Data Loading
- Data access control
- Networking and private connectivity
- Usage and Billing
- Organization and Account
- Integration
- Query Acceleration
- Reference
- AWS IAM policies
- Information Schema
- Overview
- be_bvars
- be_cloud_native_compactions
- be_compactions
- character_sets
- collations
- column_privileges
- columns
- engines
- events
- global_variables
- key_column_usage
- load_tracking_logs
- loads
- materialized_views
- partitions
- pipe_files
- pipes
- referential_constraints
- routines
- schema_privileges
- schemata
- session_variables
- statistics
- table_constraints
- table_privileges
- tables
- tables_config
- task_runs
- tasks
- triggers
- user_privileges
- views
- Data Types
- System Metadatabase
- Keywords
- SQL Statements
- Account Management
- Data Definition
- CREATE TABLE
- ALTER TABLE
- DROP CATALOG
- CREATE TABLE LIKE
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- DROP TABLE
- RECOVER
- USE
- CREATE MATERIALIZED VIEW
- DROP DATABASE
- ALTER MATERIALIZED VIEW
- DROP REPOSITORY
- CANCEL RESTORE
- DROP INDEX
- DROP MATERIALIZED VIEW
- CREATE DATABASE
- CREATE TABLE AS SELECT
- BACKUP
- CANCEL BACKUP
- CREATE REPOSITORY
- CREATE INDEX
- Data Manipulation
- INSERT
- SHOW CREATE DATABASE
- SHOW BACKUP
- SHOW ALTER MATERIALIZED VIEW
- SHOW CATALOGS
- SHOW CREATE MATERIALIZED VIEW
- SELECT
- SHOW ALTER
- SHOW MATERIALIZED VIEW
- RESUME ROUTINE LOAD
- ALTER ROUTINE LOAD
- SHOW TABLES
- STREAM LOAD
- SHOW PARTITIONS
- CANCEL REFRESH MATERIALIZED VIEW
- SHOW CREATE CATALOG
- SHOW ROUTINE LOAD TASK
- SHOW RESTORE
- CREATE ROUTINE LOAD
- STOP ROUTINE LOAD
- SHOW DATABASES
- BROKER LOAD
- SHOW ROUTINE LOAD
- PAUSE ROUTINE LOAD
- SHOW SNAPSHOT
- SHOW CREATE TABLE
- CANCEL LOAD
- REFRESH MATERIALIZED VIEW
- SHOW REPOSITORIES
- SHOW LOAD
- Administration
- DESCRIBE
- SQL Functions
- Function List
- String Functions
- CONCAT
- HEX
- LOWER
- SPLIT
- LPAD
- SUBSTRING
- PARSE_URL
- INSTR
- REPEAT
- LCASE
- REPLACE
- HEX_DECODE_BINARY
- RPAD
- SPLIT_PART
- STRCMP
- SPACE
- CHARACTER_LENGTH
- URL_ENCODE
- APPEND_TAILING_CHAR_IF_ABSENT
- LTRIM
- HEX_DECODE_STRING
- URL_DECODE
- LEFT
- STARTS_WITH
- CONCAT
- GROUP_CONCAT
- STR_TO_MAP
- STRLEFT
- STRRIGHT
- MONEY_FORMAT
- RIGHT
- SUBSTRING_INDEX
- UCASE
- TRIM
- FIND_IN_SET
- RTRIM
- ASCII
- UPPER
- REVERSE
- LENGTH
- UNHEX
- ENDS_WITH
- CHAR_LENGTH
- NULL_OR_EMPTY
- LOCATE
- CHAR
- Predicate Functions
- Map Functions
- Binary Functions
- Geospatial Functions
- Lambda Expression
- Utility Functions
- Bitmap Functions
- BITMAP_SUBSET_LIMIT
- TO_BITMAP
- BITMAP_AGG
- BITMAP_FROM_STRING
- BITMAP_OR
- BITMAP_REMOVE
- BITMAP_AND
- BITMAP_TO_BASE64
- BITMAP_MIN
- BITMAP_CONTAINS
- SUB_BITMAP
- BITMAP_UNION
- BITMAP_COUNT
- BITMAP_UNION_INT
- BITMAP_XOR
- BITMAP_UNION_COUNT
- BITMAP_HAS_ANY
- BITMAP_INTERSECT
- BITMAP_AND_NOT
- BITMAP_TO_STRING
- BITMAP_HASH
- INTERSECT_COUNT
- BITMAP_EMPTY
- BITMAP_MAX
- BASE64_TO_ARRAY
- BITMAP_TO_ARRAY
- Struct Functions
- Aggregate Functions
- RETENTION
- MI
- MULTI_DISTINCT_SUM
- WINDOW_FUNNEL
- STDDEV_SAMP
- GROUPING_ID
- HLL_HASH
- AVG
- HLL_UNION_AGG
- COUNT
- BITMAP
- HLL_EMPTY
- SUM
- MAX_BY
- PERCENTILE_CONT
- COVAR_POP
- PERCENTILE_APPROX
- HLL_RAW_AGG
- STDDEV
- CORR
- COVAR_SAMP
- MIN_BY
- MAX
- VAR_SAMP
- STD
- HLL_UNION
- APPROX_COUNT_DISTINCT
- MULTI_DISTINCT_COUNT
- VARIANCE
- ANY_VALUE
- COUNT_IF
- GROUPING
- PERCENTILE_DISC
- Array Functions
- ARRAY_CUM_SUM
- ARRAY_MAX
- ARRAY_LENGTH
- ARRAY_REMOVE
- UNNEST
- ARRAY_SLICE
- ALL_MATCH
- ARRAY_CONCAT
- ARRAY_SORT
- ARRAY_POSITION
- ARRAY_DIFFERENCE
- ARRAY_CONTAINS
- ARRAY_JOIN
- ARRAY_INTERSECT
- CARDINALITY
- ARRAY_CONTAINS_ALL
- ARRAYS_OVERLAP
- ARRAY_MIN
- ARRAY_MAP
- ELEMENT_AT
- ARRAY_APPEND
- ARRAY_SORTBY
- ARRAY_TO_BITMAP
- ARRAY_GENERATE
- ARRAY_AVG
- ARRAY_FILTER
- ANY_MATCH
- REVERSE
- ARRAY_AGG
- ARRAY_DISTINCT
- ARRAY_SUM
- Condition Functions
- Math Functions
- Date and Time Functions
- DAYNAME
- MINUTE
- FROM_UNIXTIME
- HOUR
- MONTHNAME
- MONTHS_ADD
- ADD_MONTHS
- DATE_SUB
- PREVIOUS_DAY
- TO_TERA_DATA
- MINUTES_SUB
- WEEKS_ADD
- HOURS_DIFF
- UNIX_TIMESTAMP
- DAY
- DATE_SLICE
- DATE
- CURTIME
- SECONDS_SUB
- MONTH
- WEEK
- TO_DATE
- TIMEDIFF
- MONTHS_DIFF
- STR_TO_JODATIME
- WEEK_ISO
- MICROSECONDS_SUB
- TIME_SLICE
- MAKEDATE
- DATE_TRUNC
- JODATIME
- DAYOFWEEK
- YEARS_SUB
- TIMESTAMP_ADD
- HOURS_SUB
- STR2DATE
- TIMESTAMP
- FROM_DAYS
- WEEK_OF_YEAR
- YEAR
- TIMESTAMP_DIFF
- TO_TERA_TIMESTAMP
- DAYOFMONTH
- DAYOFYEAR
- DATE_FORMAT
- MONTHS_SUB
- NEXT_DAY
- MINUTES_DIFF
- DATA_ADD
- MINUTES_ADD
- CURDATE
- DAY_OF_WEEK_ISO
- CURRENt_TIMESTAMP
- STR_TO_DATE
- LAST_DAY
- WEEKS_SUB
- TO_DAYS
- DATEDIFF
- NOW
- TO_ISO8601
- TIME_TO_SEC
- QUARTER
- SECONDS_DIFF
- UTC_TIMESTAMP
- DATA_DIFF
- SECONDS_ADD
- ADDDATE
- WEEKSDIFF
- CONVERT_TZ
- MICROSECONDS_ADD
- SECOND
- YEARS_DIFF
- YEARS_ADD
- HOURS_ADD
- DAYS_SUB
- DAYS_DIFF
- Cryptographic Functions
- Percentile Functions
- Bit Functions
- JSON Functions
- Hash Functions
- Scalar Functions
- Table Functions
unnest
Description
UNNEST is a table function that takes an array and converts elements in that array into multiple rows of a table. The conversion is also known as "flattening".
You can use Lateral Join with UNNEST to implement common conversions, for example, from STRING, ARRAY, or BITMAP to multiple rows. For more information, see Lateral join.
UNNEST can take a variable number of array parameters. The arrays can vary in type and length (number of elements). If the arrays have different lengths, the largest length prevails, which means nulls will be added to arrays that are less than this length. See Example 2 for more information.
Syntax
unnest(array0[, array1 ...])
Parameters
array
: the array you want to convert. It must be an array or expression that can evaluate to an ARRAY data type. You can specify one or more arrays or array expressions.
Return value
Returns the multiple rows converted from the array. The type of return value depends on the types of elements in the array.
For the element types supported in an array, see ARRAY.
Usage notes
- UNNEST is a table function. It must be used with Lateral Join but the keyword Lateral Join does not need to be explicitly specified.
- If the array expression evaluates to NULL or it is empty, no rows will be returned.
- If an element in the array is NULL, NULL is returned for that element.
Examples
Example 1: UNNEST takes one parameter
-- Create table student_score where scores is an ARRAY column.
CREATE TABLE student_score
(
`id` bigint(20) NULL COMMENT "",
`scores` ARRAY<int> NULL COMMENT ""
)
DUPLICATE KEY (id)
DISTRIBUTED BY HASH(`id`);
-- Insert data into this table.
INSERT INTO student_score VALUES
(1, [80,85,87]),
(2, [77, null, 89]),
(3, null),
(4, []),
(5, [90,92]);
-- Query data from this table.
SELECT * FROM student_score ORDER BY id;
+------+--------------+
| id | scores |
+------+--------------+
| 1 | [80,85,87] |
| 2 | [77,null,89] |
| 3 | NULL |
| 4 | [] |
| 5 | [90,92] |
+------+--------------+
-- Use UNNEST to flatten the scores column into multiple rows.
SELECT id, scores, unnest FROM student_score, unnest(scores);
+------+--------------+--------+
| id | scores | unnest |
+------+--------------+--------+
| 1 | [80,85,87] | 80 |
| 1 | [80,85,87] | 85 |
| 1 | [80,85,87] | 87 |
| 2 | [77,null,89] | 77 |
| 2 | [77,null,89] | NULL |
| 2 | [77,null,89] | 89 |
| 5 | [90,92] | 90 |
| 5 | [90,92] | 92 |
+------+--------------+--------+
[80,85,87] corresponding to id = 1
is converted into three rows.
[77,null,89] corresponding to id = 2
retains the null value.
scores
corresponding to id = 3
and id = 4
are NULL and empty, which are skipped.
Example 2: UNNEST takes multiple parameters
-- Create table example_table where the type and scores columns vary in type.
CREATE TABLE example_table (
id varchar(65533) NULL COMMENT "",
type varchar(65533) NULL COMMENT "",
scores ARRAY<int> NULL COMMENT ""
) ENGINE=OLAP
DUPLICATE KEY(id)
COMMENT "OLAP"
DISTRIBUTED BY HASH(id)
PROPERTIES (
"replication_num" = "3");
-- Insert data into the table.
INSERT INTO example_table VALUES
("1", "typeA;typeB", [80,85,88]),
("2", "typeA;typeB;typeC", [87,90,95]);
-- Query data from the table.
SELECT * FROM example_table;
+------+-------------------+------------+
| id | type | scores |
+------+-------------------+------------+
| 1 | typeA;typeB | [80,85,88] |
| 2 | typeA;typeB;typeC | [87,90,95] |
+------+-------------------+------------+
-- Use UNNEST to convert type and scores into multiple rows.
SELECT id, unnest.type, unnest.scores
FROM example_table, unnest(split(type, ";"), scores) as unnest(type,scores);
+------+-------+--------+
| id | type | scores |
+------+-------+--------+
| 1 | typeA | 80 |
| 1 | typeB | 85 |
| 1 | NULL | 88 |
| 2 | typeA | 87 |
| 2 | typeB | 90 |
| 2 | typeC | 95 |
+------+-------+--------+
type
and scores
in UNNEST
vary in type and length.
type
is a VARCHAR column while scores
is an ARRAY column. The split() function is used to convert type
into ARRAY.
For id = 1
, type
is converted into ["typeA","typeB"], which has two elements.
For id = 2
, type
is converted into ["typeA","typeB","typeC"], which has three elements.
To ensure consistent numbers of rows for each id
, a null element is added to ["typeA","typeB"].