- Release Notes
- Get Started
- Clusters
- Cloud Settings
- Table Type
- Query Data Lakes
- Integration
- Query Acceleration
- Data Loading
- Concepts
- Batch load data from Amazon S3
- Batch load data from Azure cloud storage
- Load data from a local file system
- Load data from Confluent Cloud
- Load data from Amazon MSK
- Load data from Amazon Kinesis
- Data Unloading
- Data Backup
- Security
- Console Access Control
- Data Access Control
- Application keys
- Service accounts
- Use SSL connection
- Alarm
- Usage and Billing
- Organizations and Accounts
- Reference
- Amazon Web Services (AWS)
- Microsoft Azure
- SQL Reference
- Keywords
- ALL statements
- User Account Management
- Cluster Management
- ADMIN CANCEL REPAIR
- ADMIN CHECK TABLET
- ADMIN REPAIR
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW TABLE STATUS
- SHOW FILE
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- RESUME ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- SELECT
- SHOW ALTER
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEW
- SHOW PARTITIONS
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- Auxiliary Commands
- Data Types
- Keywords
- SQL Functions
- Function list
- Java UDFs
- Window functions
- Lambda expression
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_diff
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayofweek_iso
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- jodatime_format
- last_day
- makedate
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- next_day
- now
- previous_day
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str_to_jodatime
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- to_iso8601
- to_tera_date
- to_tera_timestamp
- unix_timestamp
- utc_timestamp
- week
- week_iso
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Aggregate Functions
- any_value
- approx_count_distinct
- array_agg
- avg
- bitmap
- bitmap_agg
- count
- count_if
- corr
- covar_pop
- covar_samp
- group_concat
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- min_by
- multi_distinct_sum
- multi_distinct_count
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- stddev
- stddev_samp
- sum
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Geographic Functions
- String Functions
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex
- hex_decode_binary
- hex_decode_string
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- substring_index
- starts_with
- strleft
- strright
- str_to_map
- substring
- trim
- ucase
- unhex
- upper
- url_decode
- url_encode
- Pattern Matching Functions
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Bit Functions
- Bitmap Functions
- Array Functions
- all_match
- any_match
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_generate
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- cardinality
- element_at
- reverse
- unnest
- Map Functions
- Binary Functions
- cast function
- hash function
- Cryptographic Functions
- Math Functions
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Struct Functions
- Table Functions
- Utility Functions
- AUTO_INCREMENT
- Generated columns
- System variables
- System limits
- Information Schema
- Overview
- be_bvars
- be_cloud_native_compactions
- be_compactions
- character_sets
- collations
- column_privileges
- columns
- engines
- events
- global_variables
- key_column_usage
- load_tracking_logs
- loads
- materialized_views
- partitions
- pipe_files
- pipes
- referential_constraints
- routines
- schema_privileges
- schemata
- session_variables
- statistics
- table_constraints
- table_privileges
- tables
- tables_config
- task_runs
- tasks
- triggers
- user_privileges
- views
- System Metadatabase
- API
- Overview
- Actions
- Clusters
- Create and Manage Clusters
- Query Clusters
- Identity and Access Management
- Organization and Account
- Usage and Billing
- Clusters
- Terraform Provider
- Run scripts
BINARY/VARBINARY
Description
BINARY(M)
VARBINARY(M)
CelerData supports the BINARY/VARBINARY data type, which is used to store binary data. The maximum supported length is the same as VARCHAR (1~1048576). The unit is byte. If M
is not specified, 1048576 is used by default. Binary data types contain byte strings while character data types contain character strings.
BINARY is an alias of VARBINARY. The usage is the same as VARBINARY.
Limits and usage notes
VARBINARY columns are supported in Duplicate Key, Primary Key, and Unique Key tables. They are not supported in Aggregate tables.
VARBINARY columns cannot be used as partition keys, bucketing keys, or dimension columns of Duplicate Key, Primary Key, and Unique Key tables. They cannot be used in ORDER BY, GROUP BY, and JOIN clauses.
BINARY(M)/VARBINARY(M) are not right-padded in the case of unaligned length.
Examples
Create a column of VARBINARY type
When creating a table, use the keyword VARBINARY
to specify column j
as a VARBINARY column.
CREATE TABLE `test_binary` (
`id` INT(11) NOT NULL COMMENT "",
`j` VARBINARY NULL COMMENT ""
) ENGINE=OLAP
DUPLICATE KEY(`id`)
COMMENT "OLAP"
DISTRIBUTED BY HASH(`id`)
PROPERTIES (
"replication_num" = "3",
"storage_format" = "DEFAULT"
);
mysql> DESC test_binary;
+-------+-----------+------+-------+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-----------+------+-------+---------+-------+
| id | int | NO | true | NULL | |
| j | varbinary | YES | false | NULL | |
+-------+-----------+------+-------+---------+-------+
2 rows in set (0.01 sec)
Load data and store it as BINARY type
CelerData supports the following ways to load data and store it as BINARY type.
Method 1: Use INSERT INTO to write data to a constant column of BINARY type (such as column
j
), where the constant column is prefixed withx''
.INSERT INTO test_binary (id, j) VALUES (1, x'abab'); INSERT INTO test_binary (id, j) VALUES (2, x'baba'); INSERT INTO test_binary (id, j) VALUES (3, x'010102'); INSERT INTO test_binary (id, j) VALUES (4, x'0000');
Method 2: Use the to_binary function to convert VARCHAR data to binary data.
INSERT INTO test_binary select 5, to_binary('abab', 'hex'); INSERT INTO test_binary select 6, to_binary('abab', 'base64'); INSERT INTO test_binary select 7, to_binary('abab', 'utf8');
Method 3: Use Broker Load to load a Parquet or ORC file and store the file as BINARY data. For more information, see Broker Load.
For Parquet files, convert
parquet::Type::type::BYTE_ARRAY
toTYPE_VARBINARY
directly.For ORC files, convert
orc::BINARY
toTYPE_VARBINARY
directly.-- Query the loaded data. mysql> select * from t1; +------+------+------------+ | k | v | xx | +------+------+------------+ | 0 | 0 | 0xAB | +------+------+------------+ 1 rows in set (0.11 sec)
Query and process BINARY data
CelerData supports querying and processing BINARY data, and supports the use of BINARY functions and operators. This example uses table test_binary
.
Note: If you add the --binary-as-hex
option When you access CelerData from your MySQL client, binary data will be displayed using hex notation.
mysql> select * from test_binary;
+------+------------+
| id | j |
+------+------------+
| 1 | 0xABAB |
| 2 | 0xBABA |
| 3 | 0x010102 |
| 4 | 0x0000 |
| 5 | 0xABAB |
| 6 | 0xABAB |
| 7 | 0x61626162 |
+------+------------+
7 rows in set (0.08 sec)
Example 1: View binary data using the hex function.
mysql> select id, hex(j) from test_binary;
+------+----------+
| id | hex(j) |
+------+----------+
| 1 | ABAB |
| 2 | BABA |
| 3 | 010102 |
| 4 | 0000 |
| 5 | ABAB |
| 6 | ABAB |
| 7 | 61626162 |
+------+----------+
7 rows in set (0.02 sec)
Example 2: View binary data using the to_base64 function.
mysql> select id, to_base64(j) from test_binary;
+------+--------------+
| id | to_base64(j) |
+------+--------------+
| 1 | q6s= |
| 2 | uro= |
| 3 | AQEC |
| 4 | AAA= |
| 5 | q6s= |
| 6 | q6s= |
| 7 | YWJhYg== |
+------+--------------+
7 rows in set (0.01 sec)
Example 3: View binary data using the from_binary function.
mysql> select id, from_binary(j, 'hex') from test_binary;
+------+-----------------------+
| id | from_binary(j, 'hex') |
+------+-----------------------+
| 1 | ABAB |
| 2 | BABA |
| 3 | 010102 |
| 4 | 0000 |
| 5 | ABAB |
| 6 | ABAB |
| 7 | 61626162 |
+------+-----------------------+
7 rows in set (0.01 sec)