- Release Notes
- Get Started
- Clusters
- Cloud Settings
- Table Type
- Query Data Lakes
- Integration
- Query Acceleration
- Data Loading
- Concepts
- Batch load data from Amazon S3
- Batch load data from Azure cloud storage
- Load data from a local file system
- Load data from Confluent Cloud
- Load data from Amazon MSK
- Load data from Amazon Kinesis
- Data Unloading
- Data Backup
- Security
- Console Access Control
- Data Access Control
- Application keys
- Service accounts
- Use SSL connection
- Alarm
- Usage and Billing
- Organizations and Accounts
- Reference
- Amazon Web Services (AWS)
- Microsoft Azure
- SQL Reference
- Keywords
- ALL statements
- User Account Management
- Cluster Management
- ADMIN CANCEL REPAIR
- ADMIN CHECK TABLET
- ADMIN REPAIR
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW TABLE STATUS
- SHOW FILE
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- RESUME ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- SELECT
- SHOW ALTER
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEW
- SHOW PARTITIONS
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- Auxiliary Commands
- Data Types
- Keywords
- SQL Functions
- Function list
- Java UDFs
- Window functions
- Lambda expression
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_diff
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayofweek_iso
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- jodatime_format
- last_day
- makedate
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- next_day
- now
- previous_day
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str_to_jodatime
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- to_iso8601
- to_tera_date
- to_tera_timestamp
- unix_timestamp
- utc_timestamp
- week
- week_iso
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Aggregate Functions
- any_value
- approx_count_distinct
- array_agg
- avg
- bitmap
- bitmap_agg
- count
- count_if
- corr
- covar_pop
- covar_samp
- group_concat
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- min_by
- multi_distinct_sum
- multi_distinct_count
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- stddev
- stddev_samp
- sum
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Geographic Functions
- String Functions
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex
- hex_decode_binary
- hex_decode_string
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- substring_index
- starts_with
- strleft
- strright
- str_to_map
- substring
- trim
- ucase
- unhex
- upper
- url_decode
- url_encode
- Pattern Matching Functions
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Bit Functions
- Bitmap Functions
- Array Functions
- all_match
- any_match
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_generate
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- cardinality
- element_at
- reverse
- unnest
- Map Functions
- Binary Functions
- cast function
- hash function
- Cryptographic Functions
- Math Functions
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Struct Functions
- Table Functions
- Utility Functions
- AUTO_INCREMENT
- Generated columns
- System variables
- System limits
- Information Schema
- Overview
- be_bvars
- be_cloud_native_compactions
- be_compactions
- character_sets
- collations
- column_privileges
- columns
- engines
- events
- global_variables
- key_column_usage
- load_tracking_logs
- loads
- materialized_views
- partitions
- pipe_files
- pipes
- referential_constraints
- routines
- schema_privileges
- schemata
- session_variables
- statistics
- table_constraints
- table_privileges
- tables
- tables_config
- task_runs
- tasks
- triggers
- user_privileges
- views
- System Metadatabase
- API
- Overview
- Actions
- Clusters
- Create and Manage Clusters
- Query Clusters
- Identity and Access Management
- Organization and Account
- Usage and Billing
- Clusters
- Terraform Provider
- Run scripts
UPDATE
Updates rows in a Primary Key table.
The UPDATE statement supports multi-table joins and common table expressions (CTEs). If you need to join the table to be updated with other tables in the database, you can reference these other tables in the FROM clause or CTE. The UPDATE statement also supports the partial updates in column mode, which is suitable for scenarios involving a small number of columns but a large number of rows, resulting in faster update speeds.
This command requires the UPDATE privilege on the table you want to update.
Usage notes
When executing the UPDATE statement involving multiple tables, CelerData converts the table expression in the FROM clause of the UPDATE statement into an equivalent JOIN query statement. Therefore, make sure that the table expression that you specify in the FROM clause of the UPDATE statement supports this conversion. For example, the UPDATE statement is 'UPDATE t0 SET v1=t1.v1 FROM t1 WHERE t0.pk = t1.pk;'. The table expression in the FROM clause can be converted to 't0 JOIN t1 ON t0.pk=t1.pk;'. CelerData matches the data rows to be updated based on the result set of the JOIN query. It is possible that multiple rows in the result set match a certain row in the table to be updated. In this scenario, that row is updated based on the value of a random row among these multiple rows.
Syntax
Single-table UPDATE
If the data rows of the table to be updated meet the WHERE condition, the specified columns of these data rows are assigned new values.
[ WITH <with_query> [, ...] ]
UPDATE <table_name>
SET <column_name> = <expression> [, ...]
WHERE <where_condition>
Multi-table UPDATE
The result set from the multi-table join is matched against the table to be updated. If the data rows of the table to be updated match the result set and meet the WHERE condition, the specified columns of these data rows are assigned new values.
[ WITH <with_query> [, ...] ]
UPDATE <table_name>
SET <column_name> = <expression> [, ...]
[ FROM <from_item> [, ...] ]
WHERE <where_condition>
Parameters
with_query
One or more CTEs that can be referenced by name in an UPDATE statement. CTEs are temporary result sets that can improve the readability of complex statements.
table_name
The name of the table to be updated.
column_name
The name of the column to be updated. It cannot include the table name. For example, 'UPDATE t1 SET col = 1' is not valid.
expression
The expression that assigns new values to the column.
from_item
One or more other tables in the database. These tables can be joined with the table to be updated based on the condition specified in the WHERE clause. The values of the rows in the result set are used to update the values for the specified columns in the matched rows in the table to be updated. For example, if the FROM clause is FROM t1 WHERE t0.pk = t1.pk
, CelerData converts the table expression in the FROM clause to t0 JOIN t1 ON t0.pk=t1.pk
when executing the UPDATE statement.
where_condition
The condition based on which you want to update rows. Only rows that meet the WHERE condition can be updated. This parameter is required, because it helps prevent you from accidentally updating the entire table. If you want to update the entire table, you can use 'WHERE true'. However, this parameter is not required for partial updates in column mode.
Partial updates in column mode
Partial updates in column mode are suitable for scenarios where only a small number of columns, but a large number of rows need to be updated. In such scenarios, enabling the column mode offers faster update speeds. For example, in a table with 100 columns, if only 10 columns (10% of the total) are updated for all rows, the update speed of the column mode is 10 times faster.
The system variable partial_update_mode
controls the mode of partial updates and supports the following values:
auto
(default): The system automatically determines the mode of partial updates by analyzing the UPDATE statement and the columns involved. If the following criteria are met, the system automatically uses the column mode:- The percentage of updated columns compared to the total number of columns is less than 30%, and the number of updated columns is fewer than 4.
- The update statement does not use a WHERE condition.
Otherwise, the system does not use the column mode.
column
: The column mode is used for the partial updates, which is particularly suitable for the partial updates which involve a small number of columns and a large number of rows.
You can use EXPLAIN UPDATE xxx
to view the mode of partial updates.
Examples
Single-table UPDATE
Create a table Employees
to record employee information and insert five data rows into the table.
CREATE TABLE Employees (
EmployeeID INT,
Name VARCHAR(50),
Salary DECIMAL(10, 2)
)
PRIMARY KEY (EmployeeID)
DISTRIBUTED BY HASH (EmployeeID)
PROPERTIES ("replication_num" = "3");
INSERT INTO Employees VALUES
(1, 'John Doe', 5000),
(2, 'Jane Smith', 6000),
(3, 'Robert Johnson', 5500),
(4, 'Emily Williams', 4500),
(5, 'Michael Brown', 7000);
If you need to give a 10% raise to all employees, you can execute the following statement:
UPDATE Employees
SET Salary = Salary * 1.1 -- Increase the salary by 10%.
WHERE true;
If you need to give a 10% raise to employees with salaries lower than the average salary, you can execute the following statement:
UPDATE Employees
SET Salary = Salary * 1.1 -- Increase the salary by 10%.
WHERE Salary < (SELECT AVG(Salary) FROM Employees);
You can also use a CTE to rewrite the above statement to improve readability.
WITH AvgSalary AS (
SELECT AVG(Salary) AS AverageSalary
FROM Employees
)
UPDATE Employees
SET Salary = Salary * 1.1 -- Increase the salary by 10%.
FROM AvgSalary
WHERE Employees.Salary < AvgSalary.AverageSalary;
Multi-table UPDATE
Create a table Accounts
to record account information and insert three data rows into the table.
CREATE TABLE Accounts (
Accounts_id BIGINT NOT NULL,
Name VARCHAR(26) NOT NULL,
Sales_person VARCHAR(50) NOT NULL
)
PRIMARY KEY (Accounts_id)
DISTRIBUTED BY HASH (Accounts_id)
PROPERTIES ("replication_num" = "3");
INSERT INTO Accounts VALUES
(1,'Acme Corporation','John Doe'),
(2,'Acme Corporation','Robert Johnson'),
(3,'Acme Corporation','Lily Swift');
If you need to give a 10% raise to employees in the table Employees
who manage accounts for Acme Corporation, you can execute the following statement:
UPDATE Employees
SET Salary = Salary * 1.1 -- Increase the salary by 10%.
FROM Accounts
WHERE Accounts.name = 'Acme Corporation'
AND Employees.Name = Accounts.Sales_person;
You can also use a CTE to rewrite the above statement to improve readability.
WITH Acme_Accounts as (
SELECT * from Accounts
WHERE Accounts.name = 'Acme Corporation'
)
UPDATE Employees SET Salary = Salary * 1.1 -- Increase the salary by 10%.
FROM Acme_Accounts
WHERE Employees.Name = Acme_Accounts.Sales_person;