- Release Notes
- Get Started
- Clusters
- Cloud Settings
- Table Type
- Query Data Lakes
- Integration
- Query Acceleration
- Data Loading
- Concepts
- Batch load data from Amazon S3
- Batch load data from Azure cloud storage
- Load data from a local file system
- Load data from Confluent Cloud
- Load data from Amazon MSK
- Load data from Amazon Kinesis
- Data Unloading
- Data Backup
- Security
- Console Access Control
- Data Access Control
- Application keys
- Service accounts
- Use SSL connection
- Alarm
- Usage and Billing
- Organizations and Accounts
- Reference
- Amazon Web Services (AWS)
- Microsoft Azure
- SQL Reference
- Keywords
- ALL statements
- User Account Management
- Cluster Management
- ADMIN CANCEL REPAIR
- ADMIN CHECK TABLET
- ADMIN REPAIR
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW TABLE STATUS
- SHOW FILE
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- RESUME ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- SELECT
- SHOW ALTER
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEW
- SHOW PARTITIONS
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- Auxiliary Commands
- Data Types
- Keywords
- SQL Functions
- Function list
- Java UDFs
- Window functions
- Lambda expression
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_diff
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayofweek_iso
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- jodatime_format
- last_day
- makedate
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- next_day
- now
- previous_day
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str_to_jodatime
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- to_iso8601
- to_tera_date
- to_tera_timestamp
- unix_timestamp
- utc_timestamp
- week
- week_iso
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Aggregate Functions
- any_value
- approx_count_distinct
- array_agg
- avg
- bitmap
- bitmap_agg
- count
- count_if
- corr
- covar_pop
- covar_samp
- group_concat
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- min_by
- multi_distinct_sum
- multi_distinct_count
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- stddev
- stddev_samp
- sum
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Geographic Functions
- String Functions
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex
- hex_decode_binary
- hex_decode_string
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- substring_index
- starts_with
- strleft
- strright
- str_to_map
- substring
- trim
- ucase
- unhex
- upper
- url_decode
- url_encode
- Pattern Matching Functions
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Bit Functions
- Bitmap Functions
- Array Functions
- all_match
- any_match
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_generate
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- cardinality
- element_at
- reverse
- unnest
- Map Functions
- Binary Functions
- cast function
- hash function
- Cryptographic Functions
- Math Functions
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Struct Functions
- Table Functions
- Utility Functions
- AUTO_INCREMENT
- Generated columns
- System variables
- System limits
- Information Schema
- Overview
- be_bvars
- be_cloud_native_compactions
- be_compactions
- character_sets
- collations
- column_privileges
- columns
- engines
- events
- global_variables
- key_column_usage
- load_tracking_logs
- loads
- materialized_views
- partitions
- pipe_files
- pipes
- referential_constraints
- routines
- schema_privileges
- schemata
- session_variables
- statistics
- table_constraints
- table_privileges
- tables
- tables_config
- task_runs
- tasks
- triggers
- user_privileges
- views
- System Metadatabase
- API
- Overview
- Actions
- Clusters
- Create and Manage Clusters
- Query Clusters
- Identity and Access Management
- Organization and Account
- Usage and Billing
- Clusters
- Terraform Provider
- Run scripts
Overview of JSON functions and operators
This topic provides an overview of the JSON constructor functions, query functions, and processing functions, operators, and path expressions that are supported by CelerData.
JSON constructor functions
JSON constructor functions are used to construct JSON data, such as JSON objects and JSON arrays.
Function | Description | Example | Return value |
---|---|---|---|
json_object | Converts one or more key-value pairs to a JSON object that consists of the key-value pairs, which are sorted by key in dictionary order. | SELECT JSON_OBJECT(' Daniel Smith', 26, 'Lily Smith', 25); | {"Daniel Smith": 26, "Lily Smith": 25} |
json_array | Converts each element of an SQL array to a JSON value and returns a JSON array that consists of those JSON values. | SELECT JSON_ARRAY(1, 2, 3); | [1,2,3] |
parse_json | Converts a string to a JSON value. | SELECT PARSE_JSON('{"a": 1}'); | {"a": 1} |
JSON query functions and processing functions
JSON query functions and processing functions are used to query and process JSON data. For example, you can use a path expression to locate an element in a JSON object.
Function | Description | Example | Return value |
---|---|---|---|
arrow function | Queries the element that can be located by a path expression in a JSON object. | SELECT parse_json('{"a": {"b": 1}}') -> '$.a.b'; | 1 |
cast | Converts data between a JSON data type and an SQL data type. | SELECT CAST(1 AS JSON); | 1 |
get_json_double | Analyzes and gets the floating point value from a specified path in a JSON string. | SELECT get_json_double('{"k1":1.3, "k2":"2"}', "$.k1"); | 1.3 |
get_json_int | Analyzes and gets the integer value from a specified path in a JSON string. | SELECT get_json_int('{"k1":1, "k2":"2"}', "$.k1"); | 1 |
get_json_string | Analyzes and gets the strings from a specified path in a JSON string. | SELECT get_json_string('{"k1":"v1", "k2":"v2"}', "$.k1"); | v1 |
json_query | Queries the value of an element that can be located by a path expression in a JSON object. | SELECT JSON_QUERY('{"a": 1}', '$.a'); | 1 |
json_each | Expands the top-level elements of a JSON object into key-value pairs. | SELECT * FROM tj_test, LATERAL JSON_EACH(j); | |
json_exists | Checks whether a JSON object contains an element that can be located by a path expression. If the element exists, this function returns 1. If the element does not exist, the function returns 0. | SELECT JSON_EXISTS('{"a": 1}', '$.a'); | 1 |
json_keys | Returns the top-level keys from a JSON object as a JSON array, or, if a path is specified, the top-level keys from the path. | SELECT JSON_KEYS('{"a": 1, "b": 2, "c": 3}'); | ["a", "b", "c"] |
json_length | Returns the length of a JSON document. | SELECT json_length('{"Name": "Alice"}'); | 1 |
json_string | Converts the JSON object to a JSON string | SELECT json_string(parse_json('{"Name": "Alice"}')); | {"Name": "Alice"} |
JSON operators
CelerData supports the following JSON comparison operators: <
, <=
, >
, >=
, =
, and !=
. You can use these operators to query JSON data. However, it does not allow you to use IN
to query JSON data. For more information about JSON operators, see JSON operators.
JSON path expressions
You can use a JSON path expression to query an element in a JSON object. JSON path expressions are of the STRING data type. In most cases, they are used with various JSON functions, such as JSON_QUERY. In CelerData, JSON path expressions do not completely comply with the SQL/JSON path specifications. For information about the JSON path syntax that is supported in CelerData, see the following table, in which the following JSON object is used as an example.
{
"people": [{
"name": "Daniel",
"surname": "Smith"
}, {
"name": "Lily",
"surname": "Smith",
"active": true
}]
}
JSON path symbol | Description | JSON path example | Return value |
---|---|---|---|
$ | Denotes a root JSON object. | '$' | { "people": [ { "name": "Daniel", "surname": "Smith" }, { "name": "Lily", "surname": Smith, "active": true } ] } |
. | Denotes a child JSON object. | ' $.people' | [ { "name": "Daniel", "surname": "Smith" }, { "name": "Lily", "surname": Smith, "active": true } ] |
[] | Denotes one or more array indexes. [n] denotes the nth element in an array. Indexes start from 0. CelerData supports querying multi-dimensional arrays, for example, ["Lucy", "Daniel"], ["James", "Smith"] . To query the "Lucy" element, you can use $.people[0][0] . | '$.people [0]' | { "name": "Daniel", "surname": "Smith" } |
[*] | Denotes all elements in an array. | '$.people[*].name' | ["Daniel", "Lily"] |
[start: end] | Denotes a subset of elements from an array. The subset is specified by the [start, end) interval, which excludes the element that is denoted by the end index. | '$.people[0: 1].name' | ["Daniel"] |