- Release Notes
- Get Started
- Clusters
- Cloud Settings
- Table Type
- Query Data Lakes
- Integration
- Query Acceleration
- Data Loading
- Concepts
- Batch load data from Amazon S3
- Batch load data from Azure cloud storage
- Load data from a local file system
- Load data from Confluent Cloud
- Load data from Amazon MSK
- Load data from Amazon Kinesis
- Data Unloading
- Data Backup
- Security
- Console Access Control
- Data Access Control
- Application keys
- Service accounts
- Use SSL connection
- Alarm
- Usage and Billing
- Organizations and Accounts
- Reference
- Amazon Web Services (AWS)
- Microsoft Azure
- SQL Reference
- Keywords
- ALL statements
- User Account Management
- Cluster Management
- ADMIN CANCEL REPAIR
- ADMIN CHECK TABLET
- ADMIN REPAIR
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW TABLE STATUS
- SHOW FILE
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- RESUME ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- SELECT
- SHOW ALTER
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEW
- SHOW PARTITIONS
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- Auxiliary Commands
- Data Types
- Keywords
- SQL Functions
- Function list
- Java UDFs
- Window functions
- Lambda expression
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_diff
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayofweek_iso
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- jodatime_format
- last_day
- makedate
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- next_day
- now
- previous_day
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str_to_jodatime
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- to_iso8601
- to_tera_date
- to_tera_timestamp
- unix_timestamp
- utc_timestamp
- week
- week_iso
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Aggregate Functions
- any_value
- approx_count_distinct
- array_agg
- avg
- bitmap
- bitmap_agg
- count
- count_if
- corr
- covar_pop
- covar_samp
- group_concat
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- min_by
- multi_distinct_sum
- multi_distinct_count
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- stddev
- stddev_samp
- sum
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Geographic Functions
- String Functions
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex
- hex_decode_binary
- hex_decode_string
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- substring_index
- starts_with
- strleft
- strright
- str_to_map
- substring
- trim
- ucase
- unhex
- upper
- url_decode
- url_encode
- Pattern Matching Functions
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Bit Functions
- Bitmap Functions
- Array Functions
- all_match
- any_match
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_generate
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- cardinality
- element_at
- reverse
- unnest
- Map Functions
- Binary Functions
- cast function
- hash function
- Cryptographic Functions
- Math Functions
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Struct Functions
- Table Functions
- Utility Functions
- AUTO_INCREMENT
- Generated columns
- System variables
- System limits
- Information Schema
- Overview
- be_bvars
- be_cloud_native_compactions
- be_compactions
- character_sets
- collations
- column_privileges
- columns
- engines
- events
- global_variables
- key_column_usage
- load_tracking_logs
- loads
- materialized_views
- partitions
- pipe_files
- pipes
- referential_constraints
- routines
- schema_privileges
- schemata
- session_variables
- statistics
- table_constraints
- table_privileges
- tables
- tables_config
- task_runs
- tasks
- triggers
- user_privileges
- views
- System Metadatabase
- API
- Overview
- Actions
- Clusters
- Create and Manage Clusters
- Query Clusters
- Identity and Access Management
- Organization and Account
- Usage and Billing
- Clusters
- Terraform Provider
- Run scripts
unnest
Description
UNNEST is a table function that takes an array and converts elements in that array into multiple rows of a table. The conversion is also known as "flattening".
You can use Lateral Join with UNNEST to implement common conversions, for example, from STRING, ARRAY, or BITMAP to multiple rows. For more information, see Lateral join.
UNNEST can take a variable number of array parameters. The arrays can vary in type and length (number of elements). If the arrays have different lengths, the largest length prevails, which means nulls will be added to arrays that are less than this length. See Example 2 for more information.
Syntax
unnest(array0[, array1 ...])
Parameters
array
: the array you want to convert. It must be an array or expression that can evaluate to an ARRAY data type. You can specify one or more arrays or array expressions.
Return value
Returns the multiple rows converted from the array. The type of return value depends on the types of elements in the array.
For the element types supported in an array, see ARRAY.
Usage notes
- UNNEST is a table function. It must be used with Lateral Join but the keyword Lateral Join does not need to be explicitly specified.
- If the array expression evaluates to NULL or it is empty, no rows will be returned.
- If an element in the array is NULL, NULL is returned for that element.
Examples
Example 1: UNNEST takes one parameter
-- Create table student_score where scores is an ARRAY column.
CREATE TABLE student_score
(
`id` bigint(20) NULL COMMENT "",
`scores` ARRAY<int> NULL COMMENT ""
)
DUPLICATE KEY (id)
DISTRIBUTED BY HASH(`id`);
-- Insert data into this table.
INSERT INTO student_score VALUES
(1, [80,85,87]),
(2, [77, null, 89]),
(3, null),
(4, []),
(5, [90,92]);
-- Query data from this table.
SELECT * FROM student_score ORDER BY id;
+------+--------------+
| id | scores |
+------+--------------+
| 1 | [80,85,87] |
| 2 | [77,null,89] |
| 3 | NULL |
| 4 | [] |
| 5 | [90,92] |
+------+--------------+
-- Use UNNEST to flatten the scores column into multiple rows.
SELECT id, scores, unnest FROM student_score, unnest(scores);
+------+--------------+--------+
| id | scores | unnest |
+------+--------------+--------+
| 1 | [80,85,87] | 80 |
| 1 | [80,85,87] | 85 |
| 1 | [80,85,87] | 87 |
| 2 | [77,null,89] | 77 |
| 2 | [77,null,89] | NULL |
| 2 | [77,null,89] | 89 |
| 5 | [90,92] | 90 |
| 5 | [90,92] | 92 |
+------+--------------+--------+
[80,85,87] corresponding to id = 1
is converted into three rows.
[77,null,89] corresponding to id = 2
retains the null value.
scores
corresponding to id = 3
and id = 4
are NULL and empty, which are skipped.
Example 2: UNNEST takes multiple parameters
-- Create table example_table where the type and scores columns vary in type.
CREATE TABLE example_table (
id varchar(65533) NULL COMMENT "",
type varchar(65533) NULL COMMENT "",
scores ARRAY<int> NULL COMMENT ""
) ENGINE=OLAP
DUPLICATE KEY(id)
COMMENT "OLAP"
DISTRIBUTED BY HASH(id)
PROPERTIES (
"replication_num" = "3");
-- Insert data into the table.
INSERT INTO example_table VALUES
("1", "typeA;typeB", [80,85,88]),
("2", "typeA;typeB;typeC", [87,90,95]);
-- Query data from the table.
SELECT * FROM example_table;
+------+-------------------+------------+
| id | type | scores |
+------+-------------------+------------+
| 1 | typeA;typeB | [80,85,88] |
| 2 | typeA;typeB;typeC | [87,90,95] |
+------+-------------------+------------+
-- Use UNNEST to convert type and scores into multiple rows.
SELECT id, unnest.type, unnest.scores
FROM example_table, unnest(split(type, ";"), scores) as unnest(type,scores);
+------+-------+--------+
| id | type | scores |
+------+-------+--------+
| 1 | typeA | 80 |
| 1 | typeB | 85 |
| 1 | NULL | 88 |
| 2 | typeA | 87 |
| 2 | typeB | 90 |
| 2 | typeC | 95 |
+------+-------+--------+
type
and scores
in UNNEST
vary in type and length.
type
is a VARCHAR column while scores
is an ARRAY column. The split() function is used to convert type
into ARRAY.
For id = 1
, type
is converted into ["typeA","typeB"], which has two elements.
For id = 2
, type
is converted into ["typeA","typeB","typeC"], which has three elements.
To ensure consistent numbers of rows for each id
, a null element is added to ["typeA","typeB"].