- Release Notes
- Get Started
- Clusters
- Cloud Settings
- Table Type
- Query Data Lakes
- Integration
- Query Acceleration
- Data Loading
- Concepts
- Batch load data from Amazon S3
- Batch load data from Azure cloud storage
- Load data from a local file system
- Load data from Confluent Cloud
- Load data from Amazon MSK
- Load data from Amazon Kinesis
- Data Unloading
- Data Backup
- Security
- Console Access Control
- Data Access Control
- Application keys
- Service accounts
- Use SSL connection
- Alarm
- Usage and Billing
- Organizations and Accounts
- Reference
- Amazon Web Services (AWS)
- Microsoft Azure
- SQL Reference
- Keywords
- ALL statements
- User Account Management
- Cluster Management
- ADMIN CANCEL REPAIR
- ADMIN CHECK TABLET
- ADMIN REPAIR
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW TABLE STATUS
- SHOW FILE
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- RESUME ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- SELECT
- SHOW ALTER
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEW
- SHOW PARTITIONS
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- Auxiliary Commands
- Data Types
- Keywords
- SQL Functions
- Function list
- Java UDFs
- Window functions
- Lambda expression
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_diff
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayofweek_iso
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- jodatime_format
- last_day
- makedate
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- next_day
- now
- previous_day
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str_to_jodatime
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- to_iso8601
- to_tera_date
- to_tera_timestamp
- unix_timestamp
- utc_timestamp
- week
- week_iso
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Aggregate Functions
- any_value
- approx_count_distinct
- array_agg
- avg
- bitmap
- bitmap_agg
- count
- count_if
- corr
- covar_pop
- covar_samp
- group_concat
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- min_by
- multi_distinct_sum
- multi_distinct_count
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- stddev
- stddev_samp
- sum
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Geographic Functions
- String Functions
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex
- hex_decode_binary
- hex_decode_string
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- substring_index
- starts_with
- strleft
- strright
- str_to_map
- substring
- trim
- ucase
- unhex
- upper
- url_decode
- url_encode
- Pattern Matching Functions
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Bit Functions
- Bitmap Functions
- Array Functions
- all_match
- any_match
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_generate
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- cardinality
- element_at
- reverse
- unnest
- Map Functions
- Binary Functions
- cast function
- hash function
- Cryptographic Functions
- Math Functions
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Struct Functions
- Table Functions
- Utility Functions
- AUTO_INCREMENT
- Generated columns
- System variables
- System limits
- Information Schema
- Overview
- be_bvars
- be_cloud_native_compactions
- be_compactions
- character_sets
- collations
- column_privileges
- columns
- engines
- events
- global_variables
- key_column_usage
- load_tracking_logs
- loads
- materialized_views
- partitions
- pipe_files
- pipes
- referential_constraints
- routines
- schema_privileges
- schemata
- session_variables
- statistics
- table_constraints
- table_privileges
- tables
- tables_config
- task_runs
- tasks
- triggers
- user_privileges
- views
- System Metadatabase
- API
- Overview
- Actions
- Clusters
- Create and Manage Clusters
- Query Clusters
- Identity and Access Management
- Organization and Account
- Usage and Billing
- Clusters
- Terraform Provider
- Run scripts
Row access policies
This topic describes what a row access policy is, how to create and apply a row access policy, two use cases in typical scenarios, how to manage row access policies, and the limits when you work with a row access policy.
For the overview of column and row-level security, see Understand column and row-level security.
For the privileges required for each SQL operation, see Manage privileges for policies.
Definition
Row-level security allows you to apply a row access policy to a table or view to determine which rows are visible in the query result.
You can include conditions and functions in the policy expression of a row access policy to transform the data at query runtime when the conditions are met.
A row access policy can be added to a table or view either when the table is created or after the table is created.
Create a row access policy
A policy consists of column name, column type, filter conditions, and functions.
Syntax:
CREATE ROW ACCESS POLICY [ IF NOT EXISTS ] <name>
AS ( <arg_name> <arg_type> [ , ... ] )
RETURNS boolean ->
<expression_on_arg_name>
[ COMMENT = '<string_literal>' ]
Parameter | Required | Description |
---|---|---|
name | Yes | The name of the policy, which must be unique across the database. Policies can be referenced across databases and catalogs in the format catalog.db.policy . If no catalog is specified, the current catalog is used. |
arg_name | Yes | The name of the column to mask. |
arg_type | Yes | The data type of the column to mask. |
RETURNS | Yes | The return data type must be BOOLEAN. |
expression_on_arg_name | Yes | The expression that is used as the filter condition, which can be any conditional function, such as if(),case when(),and ifnull(). |
COMMENT | No | The description of the policy. |
Examples:
Example 1: Create a row access policy, which only allows sales_asia
to see data in the asia
region, sales_uk
to see data in the uk
region, and ACCOUNTADMIN
to see all the data.
CREATE ROW ACCESS POLICY region_data AS
(region varchar) RETURNS boolean
->
CASE WHEN current_role()='sales_asia' and region='asia' THEN true
WHEN current_role()='sales_uk' and region='uk' THEN true
WHEN current_role()='ACCOUNTADMIN' THEN true
ELSE false
END
COMMENT "for test";
Example 2: Nest a subquery in a row access policy, which allows the current role to see only data in its own region.
CREATE ROW ACCESS POLICY rap_sales_manager_regions_2 AS
(sales_region varchar) RETURNS boolean
->
CASE WHEN EXISTS (
select * from map
where 'role' = current_role()
and 'sales_region' = region
) THEN true
ELSE false
END;
Apply a row access policy
After a policy is created, you can apply it to an existing table.
Syntax:
ALTER TABLE <tbl_name> ADD ROW ACCESS POLICY <name> ON (<cond_col1>[, <cond_col2>, ...])
Examples:
ALTER TABLE `sales_info` ADD ROW ACCESS POLICY region_data ON (region);
You can also apply an existing row access policy to a table using the WITH clause when you create a table.
Syntax:
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [database.]table_name
(column_definition1[, column_definition2, ...]
[, index_definition1[, index_definition2, ...]])
[ENGINE = [olap|mysql|elasticsearch|hive|iceberg|hudi|jdbc]]
[key_desc]
[COMMENT "table comment"]
[partition_desc]
distribution_desc
WITH ROW ACCESS POLICY <name> ON (<cond_col1 [, <cond_col2> , ...])
[WITH ROW ACCESS POLICY <name> ON (<cond_col12> [, <cond_col1> , ...]) ...]
[rollup_index]
[PROPERTIES ("key"="value", ...)]
[BROKER PROPERTIES ("key"="value", ...)]
Examples:
CREATE TABLE `sales_info` (
name varchar(50),
phone string,
region varchar(50),
sales INT)
WITH ROW ACCESS POLICY region_data ON (region);
Use case - Filter data by region
Users have sales data in three regions and want sales staff to view only data in their own region.
After connecting to your cluster as user admin
, you have the privileges associated with the default roles user_admin
and db_admin
. For data security concerns, you can create another user and assign only the required privileges to this user to test row access policies. This use case creates the following items:
- Database
db_test
- Table
sales_info
- Two roles that will have access to data in different regions
- User
row_admin
and rolerow_admin_role
with row access policy-related privileges. - Row access policy
region_data
for the table
Create a database
db_test
and switch to this database.CREATE DATABASE db_test; USE db_test;
Create a user information table
sales_info
and insert data into this table.CREATE TABLE `sales_info` ( name varchar(50), phone string, region varchar(50), sales INT); INSERT INTO `sales_info` VALUES ('lily','886410','asia',11), ('richard','654321','uk',16), ('amber','789165','africa',17);
Create two different roles and grant the roles the privilege to query data from the table.
CREATE ROLE `sales_asia`,`sales_uk`; GRANT SELECT ON TABLE `sales_info` TO ROLE `sales_asia`; GRANT SELECT ON TABLE `sales_info` TO ROLE `sales_uk`;
Create a user
row_admin
, create a rolerow_admin_role
, grant the required privileges to this role, and assign roles torow_admin
.CREATE USER `row_admin`; CREATE ROLE `row_admin_role`; -- Grant the privileges to create row access policies in the database. GRANT CREATE ROW ACCESS POLICY ON DATABASE db_test TO ROLE row_admin_role; -- Grant the privileges to apply all row access policies in the database. GRANT ALTER ON TABLE sales_info TO ROLE row_admin_role; GRANT APPLY ON ALL ROW ACCESS POLICIES to ROLE row_admin_role; -- Assign the previous roles to the user. GRANT `row_admin_role`,`sales_asia`,`sales_uk` TO USER `row_admin`; -- Switch to user row_admin. EXECUTE AS `row_admin` WITH NO REVERT; -- Activate role masking_admin_role to perform masking policy-related operations. SET ROLE `row_admin_role`;
Create a row access policy which uses CASE WHEN as the filter condition. This policy allows different roles to view only data of their own region.
CREATE ROW ACCESS POLICY region_data AS (region varchar(50)) RETURNS boolean -> CASE WHEN current_role() ='sales_asia' and region = 'asia' THEN true WHEN current_role() ='sales_uk' and region = 'uk' THEN true ELSE false END;
Apply the policy to the table.
ALTER TABLE `sales_info` ADD ROW ACCESS POLICY region_data ON (region);
Use roles
sales_asia
andsales_uk
to query data. The results show that thesales_asia
role can only see data in theasia
region and thesales_uk
role can only see data in theuk
region.SET ROLE `sales_asia`; SELECT * FROM `sales_info`; +------+--------+--------+-------+ | name | phone | region | sales | +------+--------+--------+-------+ | lily | 886410 | asia | 11 | +------+--------+--------+-------+ SET ROLE `sales_uk`; SELECT * FROM `sales_info`; +---------+--------+--------+-------+ | name | phone | region | sales | +---------+--------+--------+-------+ | richard | 654321 | uk | 16 | +---------+--------+--------+-------+
Use case - Use a mapping table for data lookup
You can customize a mapping table based on a business table to map dimensions from the business table. Mapping table is not a special concept but a common table in CelerData. You can create a row access policy based on the mapping table and specify filter conditions to filter data from the business table. When data in the mapping table changes, the policy is automatically updated without requiring you to modify the policy.
For data security concerns, you can create another user mapping_admin
and assign only the required privileges to this user to test mapping table lookup. This use case creates the following items:
- Database
db_test
- Table
revenue
and its mapping tablesales_manager_region
- Two roles that will have access to data in different regions
- User
mapping_admin
and rolemapping_admin_role
with row access policy-related privileges. - Row access policy
phone_mask
for thephone
column of the table
Create a database
db_test
and switch to this database.CREATE DATABASE db_test; USE db_test;
Create a business table
revenue
and insert data.CREATE TABLE `revenue` ( customer_id varchar(50), region varchar(50), discount float, revenue INT); INSERT INTO `revenue` VALUES ('supermarket1','LA', 0.9,100), ('grocery_store3','NYC',0.8,150), ('whole_food2','NYC',0.9,120);
Create a mapping table
sales_manager_region
which stores the owner of each region. In the following steps, roles assigned to user'Chelsea'@'%'
can only see data in theLA
region.CREATE TABLE sales_manager_region ( name varchar(50), region varchar(80) ); INSERT INTO sales_manager_region VALUES ("'Chelsea'@'%'",'LA'), ("'Amber'@'%'",'NYC');
Create roles
sales_manager
andsales
. Grant the SELECT privilege on tablesrevenue
andsales_manager_region
to the two roles.CREATE ROLE `sales_manager`,`sales`; GRANT SELECT ON TABLE `revenue`,`sales_manager_region` TO ROLE `sales_manager`; GRANT SELECT ON TABLE `revenue`,`sales_manager_region` TO ROLE `sales`;
Create user
mapping_admin
, create rolemapping_admin_role
, grant the required privileges to this role, and assign roles tomapping_admin
.CREATE USER `mapping_admin`; CREATE ROLE `mapping_admin_role`; -- Grant the privileges to create row access policies in the database. GRANT CREATE ROW ACCESS POLICY ON DATABASE db_test TO ROLE mapping_admin_role; -- Grant the privileges to apply all row access policies in the database. GRANT ALTER ON TABLE revenue TO ROLE mapping_admin_role; GRANT APPLY ON ALL ROW ACCESS POLICIES to ROLE mapping_admin_role; -- Assign the role to the user. GRANT `mapping_admin_role` TO USER `mapping_admin`;
Assign
sales_manager
to usermapping_admin
and assignsales
to userChelsea
.GRANT `sales_manager` TO USER `mapping_admin`; CREATE USER `Chelsea`; GRANT `sales` TO USER `Chelsea`; -- Allow mapping_admin to perform operations as Chelsea. GRANT IMPERSONATE ON USER `Chelsea` TO USER `mapping_admin`; -- Switch to user mapping_admin. EXECUTE AS `mapping_admin` WITH NO REVERT; -- Activate role mapping_admin_role to perform row access policy-related operations. SET ROLE `mapping_admin_role`;
The required filtering effect
sales_manager
can view all the data in therevenue
table.- Other roles can only view the data in its own region.
- When the region owner changes, no policy update is required.
Create a policy which contains a subquery against the mapping table
sales_manager_region
. This policy allows thesales_manager
role to view all data,sales
to view data only in its own region, and when the region owner changes, privileges can be updated without the need to modify the policy.CREATE ROW ACCESS POLICY sales_policy AS (region_data varchar) RETURNS boolean -> current_role() = 'sales_manager' OR current_role() = 'sales' and EXISTS (SELECT 1 FROM sales_manager_region WHERE name = current_user() and region = region_data);
Apply the policy to table
revenue
.ALTER TABLE `revenue` ADD ROW ACCESS POLICY sales_policy ON (region);
Switch to role
sales_manager
and query data fromrevenue
.sales_manager
can view all the data in the table.SET ROLE sales_manager; SELECT * FROM `revenue`; +----------------+--------+----------+---------+ | customer | region | discount | revenue | +----------------+--------+----------+---------+ | supermarket1 | LA | 0.9 | 100 | | grocery_store3 | NYC | 0.8 | 150 | | whole_food2 | NYC | 0.9 | 120 | +----------------+--------+----------+---------+
Perform operations as user
Chelsea
and switch to thesales
role. This role can only access the data row whoseregion
isLA
.EXECUTE AS `Chelsea` WITH NO REVERT; SET ROLE sales; SELECT * FROM `revenue`; +----------------+--------+----------+---------+ | customer | region | discount | revenue | +----------------+--------+----------+---------+ | supermarket1 | LA | 0.9 | 100 | +----------------+--------+----------+---------+
Manage row access policies
Unset row access policies
Unsets one or all row access policies from a table.
Syntax:
ALTER TABLE <tbl_name> DROP ROW ACCESS POLICY <name>
ALTER TABLE <tbl_name> DROP ALL ROW ACCESS POLICIES
Examples:
ALTER TABLE sales_info DROP ROW ACCESS POLICY region_data;
ALTER TABLE sales_info DROP ALL ROW ACCESS POLICIES;
Modify a row access policy
You can only modify the policy body, rename the policy, or update the comment of the policy. The new policy takes effect immediately after being created without requiring you to re-apply it to each table.
Syntax:
ALTER ROW ACCESS POLICY [ IF EXISTS ] <name> SET BODY -> <expression_on_arg_name>
ALTER ROW ACCESS POLICY [ IF EXISTS ] <name> RENAME TO <new_name>
ALTER ROW ACCESS POLICY [ IF EXISTS ] <name> SET COMMENT = '<string_literal>'
Examples:
ALTER ROW ACCESS POLICY region_data RENAME TO data_region;
ALTER ROW ACCESS POLICY region_data SET COMMENT = 'test';
Query all row access policies
Queries all row access policies in a database.
SHOW ROW ACCESS POLICIES;
+-----------------------------+------------+-----------------+----------+
| Name | Type | Catalog | Database |
+-----------------------------+------------+-----------------+----------+
| region_data | ROW ACCESS | default_catalog | zj_test |
| rap_sales_manager_regions_2 | ROW ACCESS | default_catalog | zj_test |
Query the CREATE statement of a row access policy
Syntax:
SHOW CREATE ROW ACCESS POLICY <name>
Examples:
+-------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Policy | Create Policy |
+-------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| region_data | CREATE ROW ACCESS POLICY region_data AS (region varchar) RETURNS boolean -> CASE WHEN (((CURRENT_ROLE()) = 'ROLE1') AND (`region` = 'uk')) THEN TRUE WHEN (((CURRENT_ROLE()) = 'ROLE2') AND (`region` = 'us')) THEN TRUE WHEN ((CURRENT_ROLE()) = 'ACCOUNTADMIN') THEN TRUE ELSE FALSE END COMMENT "for test" |
+-------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Drop a row access policy
You are not allowed to drop a policy that has been applied to tables. If you want to drop such a policy, revoke it from all tables to which this policy has been applied and then drop this policy.
DROP ROW ACCESS POLICY <name>
Limits
- When you create a row access policy, the return type for the policy must be BOOLEAN.
- If a row access policy is applied to a base table, you cannot create a materialized view based on that table.
- Similarly, if a table is used as the base table of a materialized view, you cannot apply a row access policy to this table.
- A column with a row access policy applied can still be used as a conditional column in another masking policy or be referenced in the subquery of another policy.
See also
Policy creation and application are controlled by privileges such as CREATE, APPLY, ALTER, and DROP. For more information about how to grant these privileges, the privileges required by each command, and privilege management mode, see Manage privileges for policies.