- Release Notes
- Get Started
- Clusters
- Cloud Settings
- Table Type
- Query Data Lakes
- Integration
- Query Acceleration
- Data Loading
- Concepts
- Batch load data from Amazon S3
- Batch load data from Azure cloud storage
- Load data from a local file system
- Load data from Confluent Cloud
- Load data from Amazon MSK
- Load data from Amazon Kinesis
- Data Unloading
- Data Backup
- Security
- Console Access Control
- Data Access Control
- Application keys
- Service accounts
- Use SSL connection
- Alarm
- Usage and Billing
- Organizations and Accounts
- Reference
- Amazon Web Services (AWS)
- Microsoft Azure
- SQL Reference
- Keywords
- ALL statements
- User Account Management
- Cluster Management
- ADMIN CANCEL REPAIR
- ADMIN CHECK TABLET
- ADMIN REPAIR
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW TABLE STATUS
- SHOW FILE
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- RESUME ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- SELECT
- SHOW ALTER
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEW
- SHOW PARTITIONS
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- Auxiliary Commands
- Data Types
- Keywords
- SQL Functions
- Function list
- Java UDFs
- Window functions
- Lambda expression
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_diff
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayofweek_iso
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- jodatime_format
- last_day
- makedate
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- next_day
- now
- previous_day
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str_to_jodatime
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- to_iso8601
- to_tera_date
- to_tera_timestamp
- unix_timestamp
- utc_timestamp
- week
- week_iso
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Aggregate Functions
- any_value
- approx_count_distinct
- array_agg
- avg
- bitmap
- bitmap_agg
- count
- count_if
- corr
- covar_pop
- covar_samp
- group_concat
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- min_by
- multi_distinct_sum
- multi_distinct_count
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- stddev
- stddev_samp
- sum
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Geographic Functions
- String Functions
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex
- hex_decode_binary
- hex_decode_string
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- substring_index
- starts_with
- strleft
- strright
- str_to_map
- substring
- trim
- ucase
- unhex
- upper
- url_decode
- url_encode
- Pattern Matching Functions
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Bit Functions
- Bitmap Functions
- Array Functions
- all_match
- any_match
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_generate
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- cardinality
- element_at
- reverse
- unnest
- Map Functions
- Binary Functions
- cast function
- hash function
- Cryptographic Functions
- Math Functions
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Struct Functions
- Table Functions
- Utility Functions
- AUTO_INCREMENT
- Generated columns
- System variables
- System limits
- Information Schema
- Overview
- be_bvars
- be_cloud_native_compactions
- be_compactions
- character_sets
- collations
- column_privileges
- columns
- engines
- events
- global_variables
- key_column_usage
- load_tracking_logs
- loads
- materialized_views
- partitions
- pipe_files
- pipes
- referential_constraints
- routines
- schema_privileges
- schemata
- session_variables
- statistics
- table_constraints
- table_privileges
- tables
- tables_config
- task_runs
- tasks
- triggers
- user_privileges
- views
- System Metadatabase
- API
- Overview
- Actions
- Clusters
- Create and Manage Clusters
- Query Clusters
- Identity and Access Management
- Organization and Account
- Usage and Billing
- Clusters
- Terraform Provider
- Run scripts
Hive catalog
A Hive catalog is a kind of external catalog within which you can:
- Directly query data stored in Apache Hive™ (Hive for short) without the need to manually create tables.
- Use INSERT INTO or asynchronous materialized views to process data stored in Hive and load the data into CelerData.
- Perform operations on CelerData to create or drop Hive databases and tables, or sink data from CelerData tables to Parquet-formatted Hive tables by using INSERT INTO (this feature is supported from v3.2 onwards).
To ensure successful SQL workloads on your Hive cluster, your CelerData cluster must be able to access the storage system and metastore of your Hive cluster. CelerData supports the following storage systems and metastores:
Object storage like AWS S3 and Microsoft Azure Storage
Metastore like Hive metastore (HMS) or AWS Glue
NOTE
If you choose AWS S3 as storage, you can use HMS or AWS Glue as metastore. If you choose any other storage system, you can only use HMS as metastore.
Usage notes
The file formats of Hive that CelerData supports are Parquet, ORC, and Textfile:
- Parquet files support the following compression formats: SNAPPY, LZO, LZ4, ZSTD, GZIP, and NO_COMPRESSION.
- ORC files support the following compression formats: ZLIB, SNAPPY, LZO, LZ4, ZSTD, and NO_COMPRESSION.
- Textfile files support the LZO compression format.
The data types of Hive that CelerData does not support are INTERVAL, BINARY. Additionally, CelerData does not support the MAP and STRUCT data types for Textfile-formatted Hive tables.
You can only use Hive catalogs to query data. You cannot use Hive catalogs to drop, delete, or insert data into your Hive cluster.
Preparations
Before you create a Hive catalog, make sure your CelerData cluster can integrate with the storage system and metastore of your Hive cluster.
Hive metastore
If your Hive cluster uses Hive metastore as metastore, check that CelerData can access the host of your Hive metastore.
NOTE
In normal cases, you can take one of the following actions to enable integration between your CelerData cluster and your Hive metastore:
- Deploy your CelerData cluster and your Hive metastore on the same VPC.
- Configure a VPC peering connection between the VPC of your CelerData cluster and the VPC of your Hive metastore.
Then, check the configurations of the security group of your Hive metastore to ensure that its inbound rules allow inbound traffic from your CelerData cluster's security group and that its port range covers the default port 9083.
AWS
If your Hive cluster uses AWS S3 as storage or AWS Glue as metastore, choose your suitable authentication method and make the required preparations such as creating IAM roles or users and adding IAM policies to the specified IAM roles or users to ensure that your CelerData cluster can access these AWS resources. For more information, see Authenticate to AWS resources > Preparations.
Microsoft Azure Storage
If your Hive cluster uses Azure as storage, choose your suitable authentication method and make the required preparations such as adding role assignments. For more information, see Authenticate to Azure cloud storage.
Create a Hive catalog
Syntax
CREATE EXTERNAL CATALOG <catalog_name>
[COMMENT <comment>]
PROPERTIES
(
"type" = "hive",
GeneralParams,
MetastoreParams,
StorageCredentialParams,
MetadataUpdateParams
)
Parameters
catalog_name
The name of the Hive catalog. The naming conventions are as follows:
- The name can contain letters, digits (0-9), and underscores (_). It must start with a letter.
- The name is case-sensitive and cannot exceed 1023 characters in length.
comment
The description of the Hive catalog. This parameter is optional.
type
The type of your data source. Set the value to hive
.
GeneralParams
A set of general parameters.
The following table describes the parameters you can configure in GeneralParams
.
Parameter | Required | Description |
---|---|---|
enable_recursive_listing | No | Specifies whether CelerData reads data from a table and its partitions and from the subdirectories within the physical locations of the table and its partitions. Valid values: true and false . Default value: false . The value true specifies to recursively list subdirectories, and the value false specifies to ignore subdirectories. |
MetastoreParams
A set of parameters about how CelerData integrates with the metastore of your data source.
Hive metastore
If you choose Hive metastore as the metastore of your data source, configure MetastoreParams
as follows:
"hive.metastore.type" = "hive",
"hive.metastore.uris" = "<hive_metastore_uri>"
The following table describes the parameter you need to configure in MetastoreParams
.
Parameter | Required | Description |
---|---|---|
hive.metastore.type | Yes | The type of metastore that you use for your Hive cluster. Set the value to hive . |
hive.metastore.uris | Yes | The URI of your Hive metastore. Format: thrift://<metastore_IP_address>:<metastore_port> .If high availability (HA) is enabled for your Hive metastore, you can specify multiple metastore URIs and separate them with commas (,), for example, "thrift://<metastore_IP_address_1>:<metastore_port_1>","thrift://<metastore_IP_address_2>:<metastore_port_2>","thrift://<metastore_IP_address_3>:<metastore_port_3>" . |
AWS Glue
If you choose AWS Glue as the metastore of your data source, which is supported only when you choose AWS S3 as storage, take one of the following actions:
To choose the instance profile-based authentication method, configure
MetastoreParams
as follows:"hive.metastore.type" = "glue", "aws.glue.use_instance_profile" = "true", "aws.glue.region" = "<aws_glue_region>"
To choose the assumed role-based authentication method, configure
MetastoreParams
as follows:"hive.metastore.type" = "glue", "aws.glue.use_instance_profile" = "true", "aws.glue.iam_role_arn" = "<iam_role_arn>", "aws.glue.region" = "<aws_glue_region>"
To choose the IAM user-based authentication method, configure
MetastoreParams
as follows:"hive.metastore.type" = "glue", "aws.glue.use_instance_profile" = "false", "aws.glue.access_key" = "<iam_user_access_key>", "aws.glue.secret_key" = "<iam_user_secret_key>", "aws.glue.region" = "<aws_s3_region>"
The following table describes the parameters you need to configure in MetastoreParams
.
Parameter | Required | Description |
---|---|---|
hive.metastore.type | Yes | The type of metastore that you use for your Hive cluster. Set the value to glue . |
aws.glue.use_instance_profile | Yes | Specifies whether to enable the instance profile-based authentication method and the assumed role-based authentication. Valid values: true and false . Default value: false . |
aws.glue.iam_role_arn | No | The ARN of the IAM role that has privileges on your AWS Glue Data Catalog. If you use the assumed role-based authentication method to access AWS Glue, you must specify this parameter. |
aws.glue.region | Yes | The region in which your AWS Glue Data Catalog resides. Example: us-west-1 . |
aws.glue.access_key | No | The access key of your AWS IAM user. If you use the IAM user-based authentication method to access AWS Glue, you must specify this parameter. |
aws.glue.secret_key | No | The secret key of your AWS IAM user. If you use the IAM user-based authentication method to access AWS Glue, you must specify this parameter. |
For information about how to choose an method for accessing AWS Glue and how to configure an access control policy in the AWS IAM Console, see Authentication parameters for accessing AWS Glue.
StorageCredentialParams
A set of parameters about how your CelerData cluster integrates with your object storage.
AWS S3
If you choose AWS S3 as storage for your Hive cluster, take one of the following actions:
To choose the instance profile-based authentication method, configure
StorageCredentialParams
as follows:"aws.s3.use_instance_profile" = "true", "aws.s3.region" = "<aws_s3_region>"
To choose the assumed role-based authentication method, configure
StorageCredentialParams
as follows:"aws.s3.use_instance_profile" = "true", "aws.s3.iam_role_arn" = "<iam_role_arn>", "aws.s3.region" = "<aws_s3_region>"
To choose the IAM user-based authentication method, configure
StorageCredentialParams
as follows:"aws.s3.use_instance_profile" = "false", "aws.s3.access_key" = "<iam_user_access_key>", "aws.s3.secret_key" = "<iam_user_secret_key>", "aws.s3.region" = "<aws_s3_region>"
The following table describes the parameters you need to configure in StorageCredentialParams
.
Parameter | Required | Description |
---|---|---|
aws.s3.use_instance_profile | Yes | Specifies whether to enable the instance profile-based authentication method and the assumed role-based authentication method. Valid values: true and false . Default value: false . |
aws.s3.iam_role_arn | No | The ARN of the IAM role that has privileges on your AWS S3 bucket. If you use the assumed role-based authentication method to access AWS S3, you must specify this parameter. |
aws.s3.region | Yes | The region in which your AWS S3 bucket resides. Example: us-west-1 . |
aws.s3.access_key | No | The access key of your IAM user. If you use the IAM user-based authentication method to access AWS S3, you must specify this parameter. |
aws.s3.secret_key | No | The secret key of your IAM user. If you use the IAM user-based authentication method to access AWS S3, you must specify this parameter. |
For information about how to choose an authentication method for accessing AWS S3 and how to configure an access control policy in AWS IAM Console, see Authentication parameters for accessing AWS S3.
Microsoft Azure Storage
This section describes the parameters that you need to configure in StorageCredentialParams
for integrating with various Azure cloud storage services by using various authentication methods. For more information about how to obtain the values of these parameters, see Authenticate to Azure cloud storage.
Azure Blob Storage
If you choose Blob Storage as storage for your Hive cluster, take one of the following actions:
To use the Shared Key authentication method, configure
StorageCredentialParams
as follows:"azure.blob.storage_account" = "<storage_account_name>", "azure.blob.shared_key" = "<storage_account_shared_key>"
The following table describes the parameters.
Parameter Description azure.blob.storage_account The name of your Blob storage account. azure.blob.shared_key The shared key (access key) of your Blob storage account. NOTICE
Note that the storage account you use for authentication must be the one used to store the data of your Hive cluster.
To use the SAS Token authentication method, configure
StorageCredentialParams
as follows:"azure.blob.storage_account" = "<storage_account_name>", "azure.blob.container" = "<container_name>", "azure.blob.sas_token" = "<storage_account_SAS_token>"
The following table describes the parameters.
Parameter Description azure.blob.storage_account The name of your Blob storage account. azure.blob.container The name of the Blob container that stores your data within your Blob storage account. azure.blob.sas_token The SAS token that is used to access your Blob storage account. NOTICE
Note that the storage account you use for authentication must be the one used to store the data of your Hive cluster.
Azure Data Lake Storage Gen2
If you choose Data Lake Storage Gen2 as storage for your Hive cluster, take one of the following actions:
To use the Managed Identity authentication method, configure
StorageCredentialParams
as follows:"azure.adls2.oauth2_use_managed_identity" = "true", "azure.adls2.oauth2_tenant_id" = "<service_principal_tenant_id>", "azure.adls2.oauth2_client_id" = "<service_client_id>"
The following table describes the parameters.
Parameter Description azure.adls2.oauth2_use_managed_identity Specifies whether to enable the Managed Identity authentication method. Set the value to true
.azure.adls2.oauth2_tenant_id The ID of the tenant of your ADLS Gen2 storage account. azure.adls2.oauth2_client_id The client ID of the managed identity that is referenced in the data credential of the destination CelerData cluster. NOTICE
Note that the storage account you use for authentication must be the one used to store the data of your Hive cluster, and the managed identity must be the one used to deploy your CelerData cluster and be assigned the required read and write permissions (for example, Storage Blob Data Owner) to the storage account.
To use the Shared Key authentication method, configure
StorageCredentialParams
as follows:"azure.adls2.storage_account" = "<storage_account_name>", "azure.adls2.shared_key" = "<storage_account_shared_key>"
The following table describes the parameters.
Parameter Description azure.adls2.storage_account The name of your ADLS Gen2 storage account. azure.adls2.shared_key The shared key (access key) of your ADLS Gen2 storage account. NOTICE
Note that the storage account you use for authentication must be the one used to store the data of your Hive cluster.
To use the Service Principal authentication method, configure
StorageCredentialParams
as follows:"azure.adls2.oauth2_client_id" = "<service_client_id>", "azure.adls2.oauth2_client_secret" = "<service_principal_client_secret>", "azure.adls2.oauth2_client_endpoint" = "<service_principal_client_endpoint>"
The following table describes the parameters.
Parameter Description azure.adls2.oauth2_client_id The application (client) ID of the service principal. azure.adls2.oauth2_client_secret The value of the client secret of the service principal. azure.adls2.oauth2_client_endpoint The OAuth 2.0 token endpoint (v1) of the service principal. NOTICE
Note that the storage account you use for authentication must be the one used to store the data of your Hive cluster, and the service principal must be the one used to deploy your CelerData cluster and be assigned the required read and write permissions (for example, Storage Blob Data Owner) to the storage account.
Azure Data Lake Storage Gen1
If you choose Data Lake Storage Gen1 as storage for your Hive cluster, take one of the following actions:
To use the Managed Service Identity authentication method, configure
StorageCredentialParams
as follows:"azure.adls1.use_managed_service_identity" = "true"
The following table describes the parameters.
Parameter Description azure.adls1.use_managed_service_identity Specifies whether to enable the Managed Service Identity authentication method. Set the value to true
.To use the Service Principal authentication method, configure
StorageCredentialParams
as follows:"azure.adls1.oauth2_client_id" = "<application_client_id>", "azure.adls1.oauth2_credential" = "<application_client_credential>", "azure.adls1.oauth2_endpoint" = "<OAuth_2.0_authorization_endpoint_v2>"
The following table describes the parameters.
Parameter Description azure.adls1.oauth2_client_id The application (client) ID of the service principal. azure.adls1.oauth2_credential The value of the client secret of the service principal. azure.adls1.oauth2_endpoint The OAuth 2.0 token endpoint (v1) of the service principal or application. NOTICE
Note that the storage account you use for authentication must be the one used to store the data of your Hive cluster, and the service principal must be the one used to deploy your CelerData cluster and be assigned the required read and write permissions (for example, Storage Blob Data Owner) to the storage account.
MetadataUpdateParams
A set of parameters about how CelerData updates the cached metadata of Hive. This parameter set is optional.
CelerData implements the automatic asynchronous update policy by default.
In most cases, you can ignore MetadataUpdateParams
and do not need to tune the policy parameters in it, because the default values of these parameters already provide you with an out-of-the-box performance.
However, if the frequency of data updates in Hive is high, you can tune these parameters to further optimize the performance of automatic asynchronous updates.
NOTE
In most cases, if your Hive data is updated at a granularity of 1 hour or less, the data update frequency is considered high.
Parameter | Required | Description |
---|---|---|
enable_metastore_cache | No | Specifies whether CelerData caches the metadata of Hive tables. Valid values: true and false . Default value: true . The value true enables the cache, and the value false disables the cache. |
enable_remote_file_cache | No | Specifies whether CelerData caches the metadata of the underlying data files of Hive tables or partitions. Valid values: true and false . Default value: true . The value true enables the cache, and the value false disables the cache. |
metastore_cache_refresh_interval_sec | No | The time interval at which CelerData asynchronously updates the metadata of Hive tables or partitions cached in itself. Unit: seconds. Default value: 7200 , which is 2 hours. |
remote_file_cache_refresh_interval_sec | No | The time interval at which CelerData asynchronously updates the metadata of the underlying data files of Hive tables or partitions cached in itself. Unit: seconds. Default value: 60 . |
metastore_cache_ttl_sec | No | The time interval at which CelerData automatically discards the metadata of Hive tables or partitions cached in itself. Unit: seconds. Default value: 86400 , which is 24 hours. |
remote_file_cache_ttl_sec | No | The time interval at which CelerData automatically discards the metadata of the underlying data files of Hive tables or partitions cached in itself. Unit: seconds. Default value: 129600 , which is 36 hours. |
For more information, see the "Understand automatic asynchronous update" section of this topic.
Examples
The following examples create a Hive catalog named hive_catalog_hms
or hive_catalog_glue
, depending on the type of metastore you use, to query data from your Hive cluster.
AWS S3
Instance profile-based authentication
If you use Hive metastore in your Hive cluster, run a command like below:
CREATE EXTERNAL CATALOG hive_catalog_hms PROPERTIES ( "type" = "hive", "hive.metastore.type" = "hive", "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083", "aws.s3.use_instance_profile" = "true", "aws.s3.region" = "us-west-2" );
If you use AWS Glue in your Amazon EMR Hive cluster, run a command like below:
CREATE EXTERNAL CATALOG hive_catalog_glue PROPERTIES ( "type" = "hive", "hive.metastore.type" = "glue", "aws.glue.use_instance_profile" = "true", "aws.glue.region" = "us-west-2", "aws.s3.use_instance_profile" = "true", "aws.s3.region" = "us-west-2" );
Assumed role-based authentication
If you use Hive metastore in your Hive cluster, run a command like below:
CREATE EXTERNAL CATALOG hive_catalog_hms PROPERTIES ( "type" = "hive", "hive.metastore.type" = "hive", "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083", "aws.s3.use_instance_profile" = "true", "aws.s3.iam_role_arn" = "arn:aws:iam::081976408565:role/test_s3_role", "aws.s3.region" = "us-west-2" );
If you use AWS Glue in your Amazon EMR Hive cluster, run a command like below:
CREATE EXTERNAL CATALOG hive_catalog_glue PROPERTIES ( "type" = "hive", "hive.metastore.type" = "glue", "aws.glue.use_instance_profile" = "true", "aws.glue.iam_role_arn" = "arn:aws:iam::081976408565:role/test_glue_role", "aws.glue.region" = "us-west-2", "aws.s3.use_instance_profile" = "true", "aws.s3.iam_role_arn" = "arn:aws:iam::081976408565:role/test_s3_role", "aws.s3.region" = "us-west-2" );
IAM user-based authentication
If you use Hive metastore in your Hive cluster, run a command like below:
CREATE EXTERNAL CATALOG hive_catalog_hms PROPERTIES ( "type" = "hive", "hive.metastore.type" = "hive", "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083", "aws.s3.use_instance_profile" = "false", "aws.s3.access_key" = "<iam_user_access_key>", "aws.s3.secret_key" = "<iam_user_access_key>", "aws.s3.region" = "us-west-2" );
If you use AWS Glue in your Amazon EMR Hive cluster, run a command like below:
CREATE EXTERNAL CATALOG hive_catalog_glue PROPERTIES ( "type" = "hive", "hive.metastore.type" = "glue", "aws.glue.use_instance_profile" = "false", "aws.glue.access_key" = "<iam_user_access_key>", "aws.glue.secret_key" = "<iam_user_secret_key>", "aws.glue.region" = "us-west-2", "aws.s3.use_instance_profile" = "false", "aws.s3.access_key" = "<iam_user_access_key>", "aws.s3.secret_key" = "<iam_user_secret_key>", "aws.s3.region" = "us-west-2" );
Microsoft Azure Storage
Azure Blob Storage
If you choose the Shared Key authentication method, run a command like below:
CREATE EXTERNAL CATALOG hive_catalog_hms PROPERTIES ( "type" = "hive", "hive.metastore.type" = "hive", "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083", "azure.blob.storage_account" = "<blob_storage_account_name>", "azure.blob.shared_key" = "<blob_storage_account_shared_key>" );
If you choose the SAS Token authentication method, run a command like below:
CREATE EXTERNAL CATALOG hive_catalog_hms PROPERTIES ( "type" = "hive", "hive.metastore.type" = "hive", "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083", "azure.blob.storage_account" = "<blob_storage_account_name>", "azure.blob.container" = "<blob_container_name>", "azure.blob.sas_token" = "<blob_storage_account_SAS_token>" );
Azure Data Lake Storage Gen2
If you choose the Managed Identity authentication method, run a command like below:
CREATE EXTERNAL CATALOG hive_catalog_hms PROPERTIES ( "type" = "hive", "hive.metastore.type" = "hive", "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083", "azure.adls2.oauth2_use_managed_identity" = "true", "azure.adls2.oauth2_tenant_id" = "<service_principal_tenant_id>", "azure.adls2.oauth2_client_id" = "<service_client_id>" );
If you choose the Shared Key authentication method, run a command like below:
CREATE EXTERNAL CATALOG hive_catalog_hms PROPERTIES ( "type" = "hive", "hive.metastore.type" = "hive", "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083", "azure.adls2.storage_account" = "<storage_account_name>", "azure.adls2.shared_key" = "<shared_key>" );
If you choose the Service Principal authentication method, run a command like below:
CREATE EXTERNAL CATALOG hive_catalog_hms PROPERTIES ( "type" = "hive", "hive.metastore.type" = "hive", "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083", "azure.adls2.oauth2_client_id" = "<service_client_id>", "azure.adls2.oauth2_client_secret" = "<service_principal_client_secret>", "azure.adls2.oauth2_client_endpoint" = "<service_principal_client_endpoint>" );
Azure Data Lake Storage Gen1
If you choose the Managed Service Identity authentication method, run a command like below:
CREATE EXTERNAL CATALOG hive_catalog_hms PROPERTIES ( "type" = "hive", "hive.metastore.type" = "hive", "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083", "azure.adls1.use_managed_service_identity" = "true" );
If you choose the Service Principal authentication method, run a command like below:
CREATE EXTERNAL CATALOG hive_catalog_hms PROPERTIES ( "type" = "hive", "hive.metastore.type" = "hive", "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083", "azure.adls1.oauth2_client_id" = "<application_client_id>", "azure.adls1.oauth2_credential" = "<application_client_credential>", "azure.adls1.oauth2_endpoint" = "<OAuth_2.0_authorization_endpoint_v2>" );
View Hive catalogs
You can use SHOW CATALOGS to query all catalogs in the current CelerData cluster:
SHOW CATALOGS;
You can also use SHOW CREATE CATALOG to query the creation statement of an external catalog. The following example queries the creation statement of a Hive catalog named hive_catalog_glue
:
SHOW CREATE CATALOG hive_catalog_glue;
Switch to a Hive Catalog and a database in it
You can use one of the following methods to switch to a Hive catalog and a database in it:
Use SET CATALOG to specify a Hive catalog in the current session, and then use USE to specify an active database:
-- Switch to a specified catalog in the current session: SET CATALOG <catalog_name> -- Specify the active database in the current session: USE <db_name>
Directly use USE to switch to a Hive catalog and a database in it:
USE <catalog_name>.<db_name>
Drop a Hive catalog
You can use DROP CATALOG to drop an external catalog.
The following example drops a Hive catalog named hive_catalog_glue
:
DROP Catalog hive_catalog_glue;
View the schema of a Hive table
You can use one of the following syntaxes to view the schema of a Hive table:
View schema
DESC[RIBE] <catalog_name>.<database_name>.<table_name>
View schema and location from the CREATE statement
SHOW CREATE TABLE <catalog_name>.<database_name>.<table_name>
Query a Hive table
Use SHOW DATABASES to view the databases in your Hive cluster.
SHOW DATABASES <catalog_name>
Use SELECT to query the destination table in the specified database:
SELECT count(*) FROM <table_name> LIMIT 10
Grant privileges on Hive tales and views
You can use the GRANT statement to grant the privileges on all tables and views within a Hive catalog to a specific role. The command syntax is as follows:
GRANT SELECT ON ALL TABLES IN ALL DATABASES TO ROLE <role_name>
For example, use the following commands to create a role named hive_role_table
, switch to the Hive catalog hive_catalog
, and then grant the role hive_role_table
the privilege to query all tables and views within the Hive catalog hive_catalog
:
-- Create a role named hive_role_table.
CREATE ROLE hive_role_table;
-- Switch to the Hive catalog hive_catalog.
SET CATALOG hive_catalog;
-- Grant the role hive_role_table the privilege to query all tables and views within the Hive catalog hive_catalog.
GRANT SELECT ON ALL TABLES IN ALL DATABASES TO ROLE hive_role_table;
Create a Hive database
Similar to the internal catalog of CelerData, if you have the CREATE DATABASE privilege on a Hive catalog, you can use the CREATE DATABASE statement to create a database in that Hive catalog. This feature is supported from v3.2 onwards.
NOTE
You can grant and revoke privileges by using GRANT and REVOKE.
Switch to a Hive catalog, and then use the following statement to create a Hive database in that catalog:
CREATE DATABASE <database_name>
[PROPERTIES ("location" = "<prefix>://<path_to_database>/<database_name.db>")]
The location
parameter specifies the file path in which you want to create the database.
- When you use Hive metastore as the metastore of your Hive cluster, the
location
parameter defaults to<warehouse_location>/<database_name.db>
, which is supported by Hive metastore if you do not specify that parameter at database creation. - When you use AWS Glue as the metastore of your Hive cluster, the
location
parameter does not have a default value, and therefore you must specify that parameter at database creation.
The prefix
varies based on the storage system you use:
Storage system | Prefix value |
---|---|
Azure Blob Storage |
|
Azure Data Lake Storage Gen2 |
|
Azure Data Lake Storage Gen1 | adl |
AWS S3 | s3 |
Drop a Hive database
Similar to the internal databases of CelerData, if you have the DROP privilege on a Hive database, you can use the DROP DATABASE statement to drop that Hive database. This feature is supported from v3.2 onwards. You can only drop empty databases.
NOTE
You can grant and revoke privileges by using GRANT and REVOKE.
When you drop a Hive database, the database's file path on your cloud storage will not be dropped along with the database.
Switch to a Hive catalog, and then use the following statement to drop a Hive database in that catalog:
DROP DATABASE <database_name>
Create a Hive table
Similar to the internal databases of CelerData, if you have the CREATE TABLE privilege on a Hive database, you can use the CREATE TABLE, CREATE TABLE AS SELECT (CTAS), or CREATE TABLE LIKE statement to create a managed table in that Hive database. This feature is supported from v3.2 onwards.
NOTE
You can grant and revoke privileges by using GRANT and REVOKE.
Switch to a Hive catalog and a database in it, and then use the following syntax to create a Hive managed table in that database.
Syntax
CREATE TABLE [IF NOT EXISTS] [database.]table_name
(column_definition1[, column_definition2, ...
partition_column_definition1,partition_column_definition2...])
[partition_desc]
[PROPERTIES ("key" = "value", ...)]
[AS SELECT query]
Parameters
column_definition
The syntax of column_definition
is as follows:
col_name col_type [COMMENT 'comment']
The following table describes the parameters.
Parameter | Description |
---|---|
col_name | The name of the column. |
col_type | The data type of the column. The following data types are supported: TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, DECIMAL, DATE, DATETIME, CHAR, VARCHAR[(length)], ARRAY, MAP, and STRUCT. The LARGEINT, HLL, and BITMAP data types are not supported. |
NOTICE
All non-partition columns must use
NULL
as the default value. This means that you must specifyDEFAULT "NULL"
for each of the non-partition columns in the table creation statement. Additionally, partition columns must be defined following non-partition columns and cannot useNULL
as the default value.
partition_desc
The syntax of partition_desc
is as follows:
PARTITION BY (par_col1[, par_col2...])
Currently CelerData only supports identity transforms, which means that CelerData creates a partition for each unique partition value.
NOTICE
Partition columns must be defined following non-partition columns. Partition columns support all data types excluding FLOAT, DOUBLE, DECIMAL, and DATETIME and cannot use
NULL
as the default value. Additionally, the sequence of the partition columns declared inpartition_desc
must be consistent with the sequence of the columns defined incolumn_definition
.
PROPERTIES
You can specify the table attributes in the "key" = "value"
format in properties
.
The following table describes a few key properties.
Property | Description |
---|---|
location | The file path in which you want to create the managed table. When you use HMS as metastore, you do not need to specify the location parameter, because CelerData will create the table in the default file path of the current Hive catalog. When you use AWS Glue as metadata service:
|
file_format | The file format of the managed table. Only the Parquet format is supported. Default value: parquet . |
compression_codec | The compression algorithm used for the managed table. The supported compression algorithms are SNAPPY, GZIP, ZSTD, and LZ4. Default value: gzip . |
Examples
Create a non-partitioned table named
unpartition_tbl
. The table consists of two columns,id
andscore
, as shown below:CREATE TABLE unpartition_tbl ( id int, score double );
Create a partitioned table named
partition_tbl_1
. The table consists of three columns,action
,id
, anddt
, of whichid
anddt
are defined as partition columns, as shown below:CREATE TABLE partition_tbl_1 ( action varchar(20), id int, dt date ) PARTITION BY (id,dt);
Query an existing table named
partition_tbl_1
, and create a partitioned table namedpartition_tbl_2
based on the query result ofpartition_tbl_1
. Forpartition_tbl_2
,id
anddt
are defined as partition columns, as shown below:CREATE TABLE partition_tbl_2 PARTITION BY (k1, k2) AS SELECT * from partition_tbl_1;
Sink data to a Hive table
Similar to the internal tables of CelerData, if you have the INSERT privilege on a Hive table (which can be a managed table or an external table), you can use the INSERT statement to sink the data of a CelerData table to that Hive table (currently only Parquet-formatted Hive tables are supported). This feature is supported from v3.2 onwards. Sinking data to external tables is disabled by default. To sink data to external tables, you must set the system variable ENABLE_WRITE_HIVE_EXTERNAL_TABLE
to true
.
NOTE
You can grant and revoke privileges by using GRANT and REVOKE.
Switch to a Hive catalog and a database in it, and then use the following syntax to sink the data of CelerData table to a Parquet-formatted Hive table in that database.
Syntax
INSERT {INTO | OVERWRITE} <table_name>
[ (column_name [, ...]) ]
{ VALUES ( { expression | DEFAULT } [, ...] ) [, ...] | query }
-- If you want to sink data to specified partitions, use the following syntax:
INSERT {INTO | OVERWRITE} <table_name>
PARTITION (par_col1=<value> [, par_col2=<value>...])
{ VALUES ( { expression | DEFAULT } [, ...] ) [, ...] | query }
NOTICE
Partition columns do not allow
NULL
values. Therefore, you must make sure that no empty values are loaded into the partition columns of the Hive table.
Parameters
Parameter | Description |
---|---|
INTO | To append the data of the CelerData table to the Hive table. |
OVERWRITE | To overwrite the existing data of the Hive table with the data of the CelerData table. |
column_name | The name of the destination column to which you want to load data. You can specify one or more columns. If you specify multiple columns, separate them with commas (, ). You can only specify columns that actually exist in the Hive table, and the destination columns that you specify must include the partition columns of the Hive table. The destination columns you specify are mapped one on one in sequence to the columns of the CelerData table, regardless of what the destination column names are. If no destination columns are specified, the data is loaded into all columns of the Hive table. If a non-partition column of the CelerData table cannot be mapped to any column of the Hive table, CelerData writes the default value NULL to the Hive table column. If the INSERT statement contains a query statement whose returned column types differ from the data types of the destination columns, CelerData performs an implicit conversion on the mismatched columns. If the conversion fails, a syntax parsing error will be returned. |
expression | Expression that assigns values to the destination column. |
DEFAULT | Assigns a default value to the destination column. |
query | Query statement whose result will be loaded into the Hive table. It can be any SQL statement supported by CelerData. |
PARTITION | The partitions into which you want to load data. You must specify all partition columns of the Hive table in this property. The partition columns that you specify in this property can be in a different sequence than the partition columns that you have defined in the table creation statement. If you specify this property, you cannot specify the column_name property. |
Examples
Insert three data rows into the
partition_tbl_1
table:INSERT INTO partition_tbl_1 VALUES ("buy", 1, "2023-09-01"), ("sell", 2, "2023-09-02"), ("buy", 3, "2023-09-03");
Insert the result of a SELECT query, which contains simple computations, into the
partition_tbl_1
table:INSERT INTO partition_tbl_1 (id, action, dt) SELECT 1+1, 'buy', '2023-09-03';
Insert the result of a SELECT query, which reads data from the
partition_tbl_1
table, into the same table:INSERT INTO partition_tbl_1 SELECT 'buy', 1, date_add(dt, INTERVAL 2 DAY) FROM partition_tbl_1 WHERE id=1;
Insert the result of a SELECT query into the partitions that meet two conditions,
dt='2023-09-01'
andid=1
, of thepartition_tbl_2
table:INSERT INTO partition_tbl_2 SELECT 'order', 1, '2023-09-01';
Or
INSERT INTO partition_tbl_2 partition(dt='2023-09-01',id=1) SELECT 'order';
Overwrite all
action
column values in the partitions that meet two conditions,dt='2023-09-01'
andid=1
, of thepartition_tbl_1
table withclose
:INSERT OVERWRITE partition_tbl_1 SELECT 'close', 1, '2023-09-01';
Or
INSERT OVERWRITE partition_tbl_1 partition(dt='2023-09-01',id=1) SELECT 'close';
Drop a Hive table
Similar to the internal tables of CelerData, if you have the DROP privilege on a Hive table, you can use the DROP TABLE statement to drop that Hive table. This feature is supported from v3.1 onwards. Note that currently CelerData supports dropping only managed tables of Hive.
NOTE
You can grant and revoke privileges by using GRANT and REVOKE.
When you drop a Hive table, you must specify the FORCE
keyword in the DROP TABLE statement. After the operation is complete, the table's file path is retained, but the table's data on your cloud storage is all dropped along with the table. Exercise caution when you perform this operation to drop a Hive table.
Switch to a Hive catalog and a database in it, and then use the following statement to drop a Hive table in that database.
DROP TABLE <table_name> FORCE
Examples
Suppose your Hive cluster uses Hive metastore as metastore and AWS S3 as object storage and you use the instance profile-based authentication method to access your AWS S3 bucket located in the us-west-2
region. In this situation, you can run the following command to create a catalog named hive_catalog_hms
to access your Hive data:
CREATE EXTERNAL CATALOG hive_catalog_hms
PROPERTIES
(
"type" = "hive",
"hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
"aws.s3.use_instance_profile" = "true",
"aws.s3.region" = "us-west-2"
);
Suppose your Hive cluster uses AWS Glue as metastore and AWS S3 as object storage and you use the assumed role-based authentication method to access your AWS S3 bucket located in the us-west-1
region. In this situation, you can run the following command to create a catalog named hive_catalog_glue
to access your Hive data:
CREATE EXTERNAL CATALOG hive_catalog_glue
PROPERTIES
(
"type" = "hive",
"hive.metastore.type" = "glue",
"aws.glue.use_instance_profile" = "true",
"aws.glue.iam_role_arn" = "arn:aws:iam::51234343412:role/role_name_in_aws_iam",
"aws.glue.region" = "us-west-1",
"aws.s3.use_instance_profile" = "true",
"aws.s3.iam_role_arn" = "arn:aws:iam::51234343412:role/role_name_in_aws_iam",
"aws.s3.region" = "us-west-1"
);
Synchronize metadata updates
By default, CelerData caches the metadata of Hive and automatically updates the metadata in asynchronous mode to deliver better performance. Additionally, after some schema changes or table updates are made on a Hive table, you can also use REFRESH EXTERNAL TABLE to update its metadata, thereby ensuring that CelerData can obtain up-to-date metadata at its earliest opportunity and generate appropriate execution plans:
REFRESH EXTERNAL TABLE <table_name>
Appendix: Understand automatic asynchronous update
Automatic asynchronous update is the default policy that CelerData uses to update the metadata in Hive catalogs.
By default (namely, when the enable_metastore_cache
and enable_remote_file_cache
parameters are both set to true
), if a query hits a partition of a Hive table, CelerData automatically caches the metadata of the partition and the metadata of the underlying data files of the partition. The cached metadata is updated by using the lazy update policy.
For example, there is a Hive table named table2
, which has four partitions: p1
, p2
, p3
, and p4
. A query hits p1
, and CelerData caches the metadata of p1
and the metadata of the underlying data files of p1
. Assume that the default time intervals to update and discard the cached metadata are as follows:
- The time interval (specified by the
metastore_cache_refresh_interval_sec
parameter) to asynchronously update the cached metadata ofp1
is 2 hours. - The time interval (specified by the
remote_file_cache_refresh_interval_sec
parameter) to asynchronously update the cached metadata of the underlying data files ofp1
is 60 seconds. - The time interval (specified by the
metastore_cache_ttl_sec
parameter) to automatically discard the cached metadata ofp1
is 24 hours. - The time interval (specified by the
remote_file_cache_ttl_sec
parameter) to automatically discard the cached metadata of the underlying data files ofp1
is 36 hours.
The following figure shows the time intervals on a timeline for easier understanding.
Then CelerData updates or discards the metadata in compliance with the following rules:
- If another query hits
p1
again and the current time from the last update is less than 60 seconds, CelerData does not update the cached metadata ofp1
or the cached metadata of the underlying data files ofp1
. - If another query hits
p1
again and the current time from the last update is more than 60 seconds, CelerData updates the cached metadata of the underlying data files ofp1
. - If another query hits
p1
again and the current time from the last update is more than 2 hours, CelerData updates the cached metadata ofp1
. - If
p1
has not been accessed within 24 hours from the last update, CelerData discards the cached metadata ofp1
. The metadata will be cached at the next query. - If
p1
has not been accessed within 36 hours from the last update, CelerData discards the cached metadata of the underlying data files ofp1
. The metadata will be cached at the next query.
- Hive catalog
- Usage notes
- Preparations
- Create a Hive catalog
- View Hive catalogs
- Switch to a Hive Catalog and a database in it
- Drop a Hive catalog
- View the schema of a Hive table
- Query a Hive table
- Grant privileges on Hive tales and views
- Create a Hive database
- Drop a Hive database
- Create a Hive table
- Sink data to a Hive table
- Drop a Hive table
- Examples
- Synchronize metadata updates
- Appendix: Understand automatic asynchronous update