- Release Notes
- Get Started
- Clusters
- Cloud Settings
- Table Type
- Query Data Lakes
- Integration
- Query Acceleration
- Data Loading
- Concepts
- Batch load data from Amazon S3
- Batch load data from Azure cloud storage
- Load data from a local file system
- Load data from Confluent Cloud
- Load data from Amazon MSK
- Load data from Amazon Kinesis
- Data Unloading
- Data Backup
- Security
- Console Access Control
- Data Access Control
- Application keys
- Service accounts
- Use SSL connection
- Alarm
- Usage and Billing
- Organizations and Accounts
- Reference
- Amazon Web Services (AWS)
- Microsoft Azure
- SQL Reference
- Keywords
- ALL statements
- User Account Management
- Cluster Management
- ADMIN CANCEL REPAIR
- ADMIN CHECK TABLET
- ADMIN REPAIR
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW TABLE STATUS
- SHOW FILE
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- RESUME ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- SELECT
- SHOW ALTER
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEW
- SHOW PARTITIONS
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- Auxiliary Commands
- Data Types
- Keywords
- SQL Functions
- Function list
- Java UDFs
- Window functions
- Lambda expression
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_diff
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayofweek_iso
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- jodatime_format
- last_day
- makedate
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- next_day
- now
- previous_day
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str_to_jodatime
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- to_iso8601
- to_tera_date
- to_tera_timestamp
- unix_timestamp
- utc_timestamp
- week
- week_iso
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Aggregate Functions
- any_value
- approx_count_distinct
- array_agg
- avg
- bitmap
- bitmap_agg
- count
- count_if
- corr
- covar_pop
- covar_samp
- group_concat
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- min_by
- multi_distinct_sum
- multi_distinct_count
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- stddev
- stddev_samp
- sum
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Geographic Functions
- String Functions
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex
- hex_decode_binary
- hex_decode_string
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- substring_index
- starts_with
- strleft
- strright
- str_to_map
- substring
- trim
- ucase
- unhex
- upper
- url_decode
- url_encode
- Pattern Matching Functions
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Bit Functions
- Bitmap Functions
- Array Functions
- all_match
- any_match
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_generate
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- cardinality
- element_at
- reverse
- unnest
- Map Functions
- Binary Functions
- cast function
- hash function
- Cryptographic Functions
- Math Functions
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Struct Functions
- Table Functions
- Utility Functions
- AUTO_INCREMENT
- Generated columns
- System variables
- System limits
- Information Schema
- Overview
- be_bvars
- be_cloud_native_compactions
- be_compactions
- character_sets
- collations
- column_privileges
- columns
- engines
- events
- global_variables
- key_column_usage
- load_tracking_logs
- loads
- materialized_views
- partitions
- pipe_files
- pipes
- referential_constraints
- routines
- schema_privileges
- schemata
- session_variables
- statistics
- table_constraints
- table_privileges
- tables
- tables_config
- task_runs
- tasks
- triggers
- user_privileges
- views
- System Metadatabase
- API
- Overview
- Actions
- Clusters
- Create and Manage Clusters
- Query Clusters
- Identity and Access Management
- Organization and Account
- Usage and Billing
- Clusters
- Terraform Provider
- Run scripts
Use Lateral Join for column-to-row conversion
Column-to-row conversion is a common operation in ETL processing. Lateral is a special Join keyword that can associate a row with an internal subquery or table function. By using Lateral in conjunction with unnest(), you can expand one row into multiple rows. For more information, see unnest.
Limits
- Currently, Lateral Join is only used with unnest() to achieve column-to-row conversion. Other table functions and UDTFs will be supported later.
- Currently, Lateral Join does not support subqueries.
Use Lateral Join
Syntax:
from table_reference join [lateral] table_reference;
Examples:
SELECT student, score
FROM tests
CROSS JOIN LATERAL UNNEST(scores) AS t (score);
SELECT student, score
FROM tests, UNNEST(scores) AS t (score);
The second syntax here is a shortened version of the first one, where the Lateral keyword can be omitted using the UNNEST keyword. The UNNEST keyword is a table function that converts an array into multiple rows. Together with Lateral Join, it can implement common row expansion logic.
NOTE
If you want to perform unnest on multiple columns, you must specify an alias for each column, for example,
select v1, t1.unnest as v2, t2.unnest as v3 from lateral_test, unnest(v2) t1, unnest(v3) t2;
.
CelerData supports type conversion among BITMAP, STRING, ARRAY, and Column.
Usage examples
Together with unnest(), you can achieve the following column-to-row conversion features:
Expand a string into multiple rows
Create a table and insert data into this table.
CREATE TABLE lateral_test2 ( `v1` bigint(20) NULL COMMENT "", `v2` string NULL COMMENT "" ) DUPLICATE KEY(v1) DISTRIBUTED BY HASH(`v1`) PROPERTIES ( "replication_num" = "3", "storage_format" = "DEFAULT" ); INSERT INTO lateral_test2 VALUES (1, "1,2,3"), (2, "1,3");
Query data before expansion.
select * from lateral_test2; +------+-------+ | v1 | v2 | +------+-------+ | 1 | 1,2,3 | | 2 | 1,3 | +------+-------+
Expand
v2
into multiple rows.-- Perform unnest on a single column. select v1,unnest from lateral_test2, unnest(split(v2, ",")); +------+--------+ | v1 | unnest | +------+--------+ | 1 | 1 | | 1 | 2 | | 1 | 3 | | 2 | 1 | | 2 | 3 | +------+--------+ -- Perform unnest on multiple columns. You must specify an alias for each operation. select v1, t1.unnest as v2, t2.unnest as v3 from lateral_test2, unnest(split(v2, ",")) t1, unnest(split(v3, ",")) t2; +------+------+------+ | v1 | v2 | v3 | +------+------+------+ | 1 | 1 | 1 | | 1 | 1 | 2 | | 1 | 2 | 1 | | 1 | 2 | 2 | | 1 | 3 | 1 | | 1 | 3 | 2 | | 2 | 1 | 1 | | 2 | 1 | 3 | | 2 | 3 | 1 | | 2 | 3 | 3 | +------+------+------+
Expand an array into multiple rows
The unnest() function can take multiple arrays of different types and lengths. For more information, see unnest().
Create a table and insert data into this table.
CREATE TABLE lateral_test ( `v1` bigint(20) NULL COMMENT "", `v2` ARRAY NULL COMMENT "" ) DUPLICATE KEY(v1) DISTRIBUTED BY HASH(`v1`) PROPERTIES ( "replication_num" = "3", "storage_format" = "DEFAULT" ); INSERT INTO lateral_test VALUES (1, [1,2]), (2, [1, null, 3]), (3, null);
Query data before expansion.
select * from lateral_test; +------+------------+ | v1 | v2 | +------+------------+ | 1 | [1,2] | | 2 | [1,null,3] | | 3 | NULL | +------+------------+
Expand
v2
into multiple rows.select v1,v2,unnest from lateral_test , unnest(v2) ; +------+------------+--------+ | v1 | v2 | unnest | +------+------------+--------+ | 1 | [1,2] | 1 | | 1 | [1,2] | 2 | | 2 | [1,null,3] | 1 | | 2 | [1,null,3] | NULL | | 2 | [1,null,3] | 3 | +------+------------+--------+
Expand Bitmap data
Create a table and insert data into this table.
CREATE TABLE lateral_test3 ( `v1` bigint(20) NULL COMMENT "", `v2` Bitmap BITMAP_UNION COMMENT "" ) AGGREGATE KEY(v1) DISTRIBUTED BY HASH(`v1`); INSERT INTO lateral_test3 VALUES (1, bitmap_from_string('1, 2')), (2, to_bitmap(3));
Query data before expansion.
select v1, bitmap_to_string(v2) from lateral_test3; +------+------------------------+ | v1 | bitmap_to_string(`v2`) | +------+------------------------+ | 1 | 1,2 | | 2 | 3 | +------+------------------------+
Insert a new row.
insert into lateral_test3 values (1, to_bitmap(3)); select v1, bitmap_to_string(v2) from lateral_test3; +------+------------------------+ | v1 | bitmap_to_string(`v2`) | +------+------------------------+ | 1 | 1,2,3 | | 2 | 3 | +------+------------------------+
Expand data in
v2
into multiple rows.select v1,unnest from lateral_test3 , unnest(bitmap_to_array(v2)); +------+--------+ | v1 | unnest | +------+--------+ | 1 | 1 | | 1 | 2 | | 1 | 3 | | 2 | 3 | +------+--------+