- Release Notes
- Get Started
- Clusters
- Cloud Settings
- Table Type
- Query Data Lakes
- Integration
- Query Acceleration
- Data Loading
- Concepts
- Batch load data from Amazon S3
- Batch load data from Azure cloud storage
- Load data from a local file system
- Load data from Confluent Cloud
- Load data from Amazon MSK
- Load data from Amazon Kinesis
- Data Unloading
- Data Backup
- Security
- Console Access Control
- Data Access Control
- Application keys
- Service accounts
- Use SSL connection
- Alarm
- Usage and Billing
- Organizations and Accounts
- Reference
- Amazon Web Services (AWS)
- Microsoft Azure
- SQL Reference
- Keywords
- ALL statements
- User Account Management
- Cluster Management
- ADMIN CANCEL REPAIR
- ADMIN CHECK TABLET
- ADMIN REPAIR
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW TABLE STATUS
- SHOW FILE
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- RESUME ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- SELECT
- SHOW ALTER
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEW
- SHOW PARTITIONS
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- Auxiliary Commands
- Data Types
- Keywords
- SQL Functions
- Function list
- Java UDFs
- Window functions
- Lambda expression
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_diff
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayofweek_iso
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- jodatime_format
- last_day
- makedate
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- next_day
- now
- previous_day
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str_to_jodatime
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- to_iso8601
- to_tera_date
- to_tera_timestamp
- unix_timestamp
- utc_timestamp
- week
- week_iso
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Aggregate Functions
- any_value
- approx_count_distinct
- array_agg
- avg
- bitmap
- bitmap_agg
- count
- count_if
- corr
- covar_pop
- covar_samp
- group_concat
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- min_by
- multi_distinct_sum
- multi_distinct_count
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- stddev
- stddev_samp
- sum
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Geographic Functions
- String Functions
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex
- hex_decode_binary
- hex_decode_string
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- substring_index
- starts_with
- strleft
- strright
- str_to_map
- substring
- trim
- ucase
- unhex
- upper
- url_decode
- url_encode
- Pattern Matching Functions
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Bit Functions
- Bitmap Functions
- Array Functions
- all_match
- any_match
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_generate
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- cardinality
- element_at
- reverse
- unnest
- Map Functions
- Binary Functions
- cast function
- hash function
- Cryptographic Functions
- Math Functions
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Struct Functions
- Table Functions
- Utility Functions
- AUTO_INCREMENT
- Generated columns
- System variables
- System limits
- Information Schema
- Overview
- be_bvars
- be_cloud_native_compactions
- be_compactions
- character_sets
- collations
- column_privileges
- columns
- engines
- events
- global_variables
- key_column_usage
- load_tracking_logs
- loads
- materialized_views
- partitions
- pipe_files
- pipes
- referential_constraints
- routines
- schema_privileges
- schemata
- session_variables
- statistics
- table_constraints
- table_privileges
- tables
- tables_config
- task_runs
- tasks
- triggers
- user_privileges
- views
- System Metadatabase
- API
- Overview
- Actions
- Clusters
- Create and Manage Clusters
- Query Clusters
- Identity and Access Management
- Organization and Account
- Usage and Billing
- Clusters
- Terraform Provider
- Run scripts
Integrate DataDog via Terraform
DataDog is a monitoring and security platform for cloud-scale applications. It provides real-time visibility into servers, databases, applications, and services. You can use DataDog to track the performance of your CelerData Cloud BYOC clusters, identify bottlenecks, and ensure optimal operation, thereby maintaining the health and efficiency of the cluster.
CelerData supports integrating DataDog with your CelerData cluster by installing the DataDog Agent via Terraform. You can follow these steps to install the DataDog Agent:
Step 1: Prepare and upload script
To install the DataDog Agent for a CelerData cluster, you must first prepare the script file that installs the Agent, and upload the script to the S3 bucket on which all EC2 instances that host the CelerData cluster have the required read or write permissions. For more information on running scripts in CelerData, see Run Scripts.
Prepare the DataDog Agent installation script
install_datadog.sh
:on_deployment_completed() { # Replace <YOUR_DD_KEY> with your DataDog API key. # Replace <YOUR_DD_SITE> with your DataDog site URL. DD_API_KEY=<YOUR_DD_API_KEY> DD_SITE="<YOUR_DD_SITE>" bash -c "$(curl -L https://s3.amazonaws.com/dd-agent/scripts/install_script_agent7.sh)" if [ "$STARROCKS_INSTANCE_TYPE" = "FE" ]; then fe_config=' init_config: instances: - openmetrics_endpoint: http://127.0.0.1:8030/metrics # Repleace <fe_metric_namespace> with the namespace you want to use for FE/Coordinator Node metrics. namespace: <fe_metric_namespace> metrics: - starrocks.* ' sudo bash -c "echo '$fe_config' > /etc/datadog-agent/conf.d/openmetrics.d/conf.yaml" elif [ "$STARROCKS_INSTANCE_TYPE" = "BE" ]; then be_config=' init_config: instances: - openmetrics_endpoint: http://127.0.0.1:8040/metrics # Repleace <be_metric_namespace> with the namespace you want to use for BE/Compute Node metrics. namespace: <be_metric_namespace> metrics: - starrocks.* ' sudo bash -c "echo '$be_config' > /etc/datadog-agent/conf.d/openmetrics.d/conf.yaml" else echo "UNKNOWN INSTANCE TYPE: $STARROCKS_INSTANCE_TYPE" exit 1 fi sudo systemctl stop datadog-agent sudo systemctl start datadog-agent }
You must specify the following parameter in the script:
Parameter Description YOUR_DD_API_KEY Your DataDog API key. YOUR_DD_SITE Your DataDog site URL. fe_metric_namespace The namespace for FE/Coordinator Node metrics. It is recommended to set this parameter in the format cluster_name + xxx + fe
to allow you to identify the metrics easily. Example:celerdata_test_fe
.be_metric_namespace The namespace for BE/Compute Node metrics. It is recommended to set this parameter in the format cluster_name + xxx + fe
to allow you to identify the metrics easily. Example:celerdata_test_be
.Upload
install_datadog.sh
to the S3 bucket whose read permissions were granted to the EC2 instances that host your CelerData cluster.
Step 2: Install Agent via Terraform
After uploading the file(s) to S3, you can install the DataDog Agent by running the script while deploying the cluster.
Declare
install_datadog.sh
in thecelerdatabyoc_classic_cluster
orcelerdatabyoc_elastic_cluster
resource used to deploy your CelerData cluster.The following example shows only the script-related arguments in a
celerdatabyoc_classic_cluster
resource. For detailed information on other arguments, seecelerdatabyoc_classic_cluster
andcelerdatabyoc_elastic_cluster
.resource "celerdatabyoc_classic_cluster" "cluster-with-datadog" { ... init_scripts { // Replace <path_to_script_logs> with a directory for the script log storage. logs_dir = "<path_to_script_logs>" // Replace <path_to_install_datadog.sh> with the S3 URI of install_datadog.sh. script_path = "<path_to_install_datadog.sh>" } run_scripts_parallel = false ... }
You must specify the following argument in the resource:
Parameter Description path_to_script_logs The S3 path used to store the logs of your scripts. The S3 path is in one of the following formats: s3://<bucket_name>/<folder_name>/
: You must go to the instance profiles associated with the EC2 instances to which the CelerData cluster will be deployed and configure read and write permissions on the specified bucket.s3a://<bucket_name>/<folder_name>/
: You must go to the instance profiles associated with the EC2 instances to which the CelerData cluster will be deployed and configure read and write permissions on the specified bucket./<folder_name>/
: You can use this format if you want the logs to be stored in the bucket you use for the cluster deployment.
Tip
It is recommended to specify this argument as the parent directory ofinstall_datadog.sh
.
path_to_install_datadog.sh The S3 URI of install_datadog.sh
. The S3 URI is in one of the following formats:s3://<bucket_name>/<folder_name>/install_datadog.sh
: You must go to the instance profiles associated with the EC2 instances to which the CelerData cluster will be deployed and configure read permissions on the specified bucket.s3a://<bucket_name>/<folder_name>/install_datadog.sh
: You must go to the instance profiles associated with the EC2 instances to which the CelerData cluster will be deployed and configure read permissions on the specified bucket./<folder_name>/install_datadog.sh
: You can use this format ifinstall_datadog.sh
is stored in the bucket you use for the cluster deployment.
Apply the resource.
terraform apply
If you have installed the DataDog Agent successfully, you will find the metrics of your CelerData cluster on the Metrics Explorer page of your DataDog site. For the detailed descriptions of the metrics supported, refer to StarRocks Monitoring Metrics.