Skip to main content

dbt

dbt-starrocks enables the use of dbt to transform data in StarRocks using dbt's modeling patterns and best practices.

dbt-starrocks GitHub repo.

Supported features

StarRocks >= 3.1StarRocks >= 3.4Feature
Table materialization
View materialization
Materialized View materialization
Incremental materialization
Primary Key Model
Sources
Custom data tests
Docs generate
Expression Partition
Kafka
Dynamic Overwrite
*Submit task
Microbatch (Insert Overwrite)
Microbatch (Dynamic Overwrite)

* Verify the specific submit task support for your version, see SUBMIT TASK

Installation

Install the StarRocks DBT adapter using pip:

pip install dbt-starrocks

Verify Installation

Verify the installation by checking the version:

dbt --version

This should list starrocks under plugins.

Configuration

Profiles

Create or update profiles.yml with StarRocks-specific settings.

starrocks_project:
target: dev
outputs:
dev:
type: starrocks
host: your-starrocks-host.com
port: 9030
schema: your_database
username: your_username
password: your_password
catalog: test_catalog

Parameters

type

Description: The specific adapter to use, this must be set to starrocks
Required?: Required
Example: starrocks

host

Description: The hostname to connect to
Required?: Required
Example: 192.168.100.28

port

Description: The port to use
Required?: Required
Example: 9030

catalog

Description: Specify the catalog to build models into
Required?: Optional
Example: default_catalog

schema

Description: Specify the schema (database in StarRocks) to build models into
Required?: Required
Example: analytics

username

Description: The username to use to connect to the server
Required?: Required
Example: dbt_admin

password

Description: The password to use for authenticating to the server
Required?: Required
Example: correct-horse-battery-staple

version

Description: Let Plugin try to go to a compatible starrocks version
Required?: Optional
Example: 3.1.0

use_pure

Description: set to "true" to use C extensions
Required?: Optional
Example: true

is_async

Description: "true" to submit suitable tasks as etl tasks.
Required?: Optional
Example: true

async_query_timeout

Description: Sets the query_timeout value when submitting a task to StarRocks
Required?: Optional
Example: 300

Sources

Create or update sources.yml

sources:
- name: your_source
database: your_sr_catalog
schema: your_sr_database
tables:
- name: your_table

If the catalog is not specified in the schema, it will default to the catalog defined in the profile. Using the profile from earlier, if catalog is not defined, the model will assume the source is located at test_catalog.your_sr_database.

Materializations

Table

Basic Table Configuration

{{ config(
materialized='table',
engine='OLAP',
keys=['id', 'name', 'created_date'],
table_type='PRIMARY',
distributed_by=['id'],
buckets=3,
partition_by=['created_date'],
properties=[
{"replication_num": "1"}
]
) }}


SELECT
id,
name,
email,
created_date,
last_modified_date
FROM {{ source('your_source', 'users') }}

Configuration Options

  • engine: Storage engine (default: OLAP)
  • keys: Columns that define the sort key
  • table_type: Table model type
    • PRIMARY: Primary key model (supports upserts and deletes)
    • DUPLICATE: Duplicate key model (allows duplicate rows)
    • UNIQUE: Unique key model (enforces uniqueness)
  • distributed_by: Columns for hash distribution
  • buckets: Number of buckets for data distribution (leave empty for auto bucketing)
  • partition_by: Columns for table partitioning
  • partition_by_init: Initial partition definitions
  • properties: Additional StarRocks table properties

Tables in External Catalogs

Read from External into StarRocks

This example creates a materialized table in StarRocks containing aggregated data from an external Hive catalog.

tip

Configure the external catalog if it does not already exist:

CREATE EXTERNAL CATALOG `hive_external`
PROPERTIES (
"hive.metastore.uris" = "thrift://127.0.0.1:8087",
"type"="hive"
);
{{ config(
materialized='table',
keys=['product_id', 'order_date'],
distributed_by=['product_id'],
partition_by=['order_date']
) }}

-- Aggregate data from Hive external catalog into StarRocks table
SELECT
h.product_id,
h.order_date,
COUNT(*) as order_count,
SUM(h.amount) as total_amount,
MAX(h.last_updated) as last_updated
FROM {{ source('hive_external', 'orders') }} h
GROUP BY
h.product_id,
h.order_date

Write to External

{{
config(
materialized='table',
on_table_exists = 'replace',
partition_by=['order_date'],
properties={},
catalog='external_catalog',
database='test_db'
)
}}

SELECT * FROM {{ source('iceberg_external', 'orders') }}

The configuration for materialization to external catalogs supports fewer options. on_table_exists, partition_by, and properties are supported. If catalog and database are not set, the defaults from the profile will be used.

Incremental

Incremental materializations are supported in StarRocks as well:

{{ config(
materialized='incremental',
unique_key='id',
table_type='PRIMARY',
keys=['id'],
distributed_by=['id'],
incremental_strategy='default'
) }}

SELECT
id,
user_id,
event_name,
event_timestamp,
properties
FROM {{ source('raw', 'events') }}

{% if is_incremental() %}
WHERE event_timestamp > (SELECT MAX(event_timestamp) FROM {{ this }})
{% endif %}

Incremental Strategies

dbt-starrocks supports multiple incremental strategies:

  1. append (default): Simply appends new records without deduplication
  2. insert_overwrite: Overwrites table partitions with insertion
  3. dynamic_overwrite: Overwrites, creates, and writes table partitions

For more information about which overwrite strategy to use, see the INSERT documentation.

note

Currently, incremental merge is not supported.

Troubleshooting

  • Before using external catalogs in dbt, you must create them in StarRocks. There is documentation on that here.
  • External sources should be accessed using the {{ source('external_source_name', 'table_name' }} macro.
  • dbt seed was not tested for external catalogs and is not currently supported.
  • In order for dbt to create models in external databases that do not currently exist, the location of the models must be set through properties.
  • External models need to define the location they are stored at. This location will be defined if the destination database exists and sets the location property. Otherwise, the location needs to be set.
    • We will currently only support creating external models in databases that already exist.